
IEEE Std 1003.1-2001
(Revision of IEEE Std 1003.1-1996

and IEEE Std 1003.2-1992)

Open Group Technical Standard
Base Specifications, Issue 6

1003.1TM

Standard for Information Technology —
Portable Operating System Interface (POSIX)

Shell and Utilities, Issue 6

Approved 12 September 2001
The Open Group

IEEE Sponsor

Portable Applications Standards Committee
of the
IEEE Computer Society

Approved 6 December 2001
IEEE-SA Standards Board

Abstract

This standard defines a standard operating system interface and environment, including a command interpreter (or ‘‘shell’’), and
common utility programs to support applications portability at the source code level. It is the single common revision to IEEE Std
1003.1-1996, IEEE Std 1003.2-1992, and the Base Specifications of The Open Group Single UNIX † Specification, Version 2. This
standard is intended to be used by both applications developers and system implementors and comprises four major components
(each in an associated volume):

• General terms, concepts, and interfaces common to all volumes of this standard, including utility conventions and C-language
header definitions, are included in the Base Definitions volume.

• Definitions for system service functions and subroutines, language-specific system services for the C programming language,
function issues, including portability, error handling, and error recovery, are included in the System Interfaces volume.

• Definitions for a standard source code-level interface to command interpretation services (a ‘‘shell’’) and common utility
programs for application programs are included in the Shell and Utilities volume.

• Extended rationale that did not fit well into the rest of the document structure, containing historical information concerning the
contents of this standard and why features were included or discarded by the standard developers, is included in the Rationale
(Informative) volume.

The following areas are outside the scope of this standard:

• Graphics interfaces

• Database management system interfaces

• Record I/O considerations

• Object or binary code portability

• System configuration and resource availability

This standard describes the external characteristics and facilities that are of importance to applications developers, rather than the
internal construction techniques employed to achieve these capabilities. Special emphasis is placed on those functions and facilities
that are needed in a wide variety of commercial applications.

Keywords

application program interface (API), argument, asynchronous, basic regular expression (BRE), batch job, batch system, built-in
utility, byte, child, command language interpreter, CPU, extended regular expression (ERE), FIFO, file access control mechanism,
input/output (I/O), job control, network, portable operating system interface (POSIX †), parent, shell, stream, string, synchronous,
system, thread, X/Open System Interface (XSI)

† See Trademarks (on page xxvi).

ii Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Copyright  2001 by the Institute of Electrical and Electronics Engineers, Inc. and The Open Group

Shell and Utilities, Issue 6

Published 6 December 2001 by the Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, U.S.A.
ISBN: 0-7381-3094-4 PDF 0-7381-3010-9/SS94956 CD-ROM 0-7381-3129-6/SE94956
Printed in the United States of America by the IEEE.

Published 6 December 2001 by The Open Group
Apex Plaza, Forbury Road, Reading, Berkshire RG1 1AX, U.K.
Document Number: C952
ISBN: U.K. 1-85912-257-4 U.S. 1-931624-09-7
Printed in the U.K. by The Open Group.

All rights reserved. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise,
without prior written permission from both the IEEE and The Open Group.

Portions of this standard are derived with permission from copyrighted material owned by Hewlett-Packard Company,
International Business Machines Corporation, Novell Inc., The Open Software Foundation, and Sun Microsystems, Inc.

Permissions

Authorization to photocopy portions of this standard for internal or personal use is granted provided that the appropriate fee is paid
to the Copyright Clearance Center or the equivalent body outside of the U.S. Permission to make multiple copies for educational
purposes in the U.S. requires agreement and a license fee to be paid to the Copyright Clearance Center.

Beyond these provisions, permission to reproduce all or any part of this standard must be with the consent of both copyright holders
and may be subject to a license fee. Both copyright holders will need to be satisfied that the other has granted permission. Requests
to the copyright holders should be sent by email to austin-group-permissions@opengroup.org.

Feedback

This standard has been prepared by the Austin Group. Feedback relating to the material contained in this standard may be
submitted using the Austin Group web site at http://www.opengroup.org/austin/defectform.html.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. iii

IEEE

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE
Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process,
approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation.
While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE
does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property, or other damage, of any
nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication,
use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any
express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use
of the material contained herein is free from patent infringement. IEEE Standards documents are supplied ‘‘AS IS’’.

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or
provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a
standard is approved and issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or
reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its
contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine
that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on
behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any
person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in
determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of the IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases
where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with the
IEEE.1 Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, U.S.A.
__
Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent
rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE
Standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

A patent holder has filed a statement of assurance that it will grant licenses under these rights without compensation or under
reasonable rates and non-discriminatory, reasonable terms and conditions to all applicants desiring to obtain such licenses. The
IEEE makes no representation as to the reasonableness of rates and/or terms and conditions of the license agreements offered by
patent holders. Further information may be obtained from the IEEE Standards Department.__LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

The IEEE and its designees are the sole entities that may authorize the use of IEEE-owned certification marks and/or trademarks to
indicate compliance with the materials set forth herein. Authorization to photocopy portions of any individual standard for internal
or personal use is granted in the U.S. by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is
paid to the Copyright Clearance Center.2 Permission to photocopy portions of any individual standard for educational classroom
use can also be obtained through the Copyright Clearance Center. To arrange for payment of the licensing fee, please contact:

Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923, U.S.A., Tel.: +1 978 750 8400

Amendments, corrigenda, and interpretations for this standard, or information about the IEEE standards development process, may
be found at http://standards.ieee.org.

Full catalog and ordering information on all IEEE publications is available from the IEEE Online Catalog & Store at
http://shop.ieee.org/store.

1. For this standard, please send comments via the Austin Group as requested on page iii.

2. Please refer to the special provisions for this standard on page iii concerning permissions from both copyright holders and arrangements to cover photocopying and
reproduction across the world, as well as by commercial organizations wishing to license the material for use in product documentation.

iv Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to delivering greater business efficiency by bringing
together buyers and suppliers of information technology to lower the time, cost, and risks associated with integrating new
technology across the enterprise.

The Open Group’s mission is to offer all organizations concerned with open information infrastructures a forum to share knowledge,
integrate open initiatives, and certify approved products and processes in a manner in which they continue to trust our impartiality.

In the global eCommerce world of today, no single economic entity can achieve independence while still ensuring interoperability.
The assurance that products will interoperate with each other across differing systems and platforms is essential to the success of
eCommerce and business workflow. The Open Group, with its proven testing and certification program, is the international
guarantor of interoperability in the new century.

The Open Group provides opportunities to exchange information and shape the future of IT. The Open Group’s members include
some of the largest and most influential organizations in the world. The flexible structure of The Open Groups membership allows
for almost any organization, no matter what their size, to join and have a voice in shaping the future of the IT world.

More information is available on The Open Group web site at http://www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification programs and has extensive experience
developing and facilitating industry adoption of test suites used to validate conformance to an open standard or specification. The
Open Group portfolio of test suites includes the Westwood family of tests for this standard and the associated certification program
for Version 3 of the Single UNIX Specification, as well tests for CDE, CORBA, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential for proper development and
maintenance of standards-based products, ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in the development cycle, saving costs in
development and quality assurance.

More information is available at http://www.opengroup.org/testing.

The Open Group publishes a wide range of technical documentation, the main part of which is focused on development of Technical
and Product Standards and Guides, but which also includes white papers, technical studies, branding and testing documentation,
and business titles. Full details and a catalog are available at http://www.opengroup.org/pubs.

As with all live documents, Technical Standards and Specifications require revision to align with new developments and associated
international standards. To distinguish between revised specifications which are fully backwards compatible and those which are
not:

• A new Version indicates there is no change to the definitive information contained in the previous publication of that title, but
additions/extensions are included. As such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in the previous publication of that title,
and there may also be additions/extensions. As such, both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is published at
http://www.opengroup.org/corrigenda.

Full catalog and ordering information on all Open Group publications is available at http://www.opengroup.org/pubs.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. v

vi Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Contents

Chapter 1 Introduction... 1
 1.1 Scope.. 1
 1.2 Conformance ... 1
 1.3 Normative References ... 1
 1.4 Change History ... 1
 1.5 Terminology... 1
 1.6 Definitions .. 3
 1.7 Relationship to Other Documents... 3
 1.7.1 System Interfaces ... 3
 1.7.1.1 Process Attributes ... 3
 1.7.1.2 Concurrent Execution of Processes... 3
 1.7.1.3 File Access Permissions ... 4
 1.7.1.4 File Read, Write, and Creation ... 4
 1.7.1.5 File Removal .. 6
 1.7.1.6 File Time Values .. 6
 1.7.1.7 File Contents .. 6
 1.7.1.8 Pathname Resolution ... 7
 1.7.1.9 Changing the Current Working Directory....................................... 7
 1.7.1.10 Establish the Locale .. 7
 1.7.1.11 Actions Equivalent to Functions.. 7
 1.7.2 Concepts Derived from the ISO C Standard...................................... 7
 1.7.2.1 Arithmetic Precision and Operations ... 7
 1.7.2.2 Mathematical Functions .. 9
 1.8 Portability ... 9
 1.8.1 Codes.. 9
 1.9 Utility Limits.. 17
 1.10 Grammar Conventions.. 19
 1.11 Utility Description Defaults.. 20
 1.12 Considerations for Utilities in Support of Files of Arbitrary Size 27
 1.13 Built-In Utilities ... 28

Chapter 2 Shell Command Language ... 29
 2.1 Shell Introduction ... 29
 2.2 Quoting ... 30
 2.2.1 Escape Character (Backslash).. 30
 2.2.2 Single-Quotes.. 30
 2.2.3 Double-Quotes ... 30
 2.3 Token Recognition.. 31
 2.3.1 Alias Substitution .. 32
 2.4 Reserved Words .. 33
 2.5 Parameters and Variables.. 33
 2.5.1 Positional Parameters.. 33

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. vii

Contents

 2.5.2 Special Parameters... 34
 2.5.3 Shell Variables... 34
 2.6 Word Expansions.. 36
 2.6.1 Tilde Expansion.. 37
 2.6.2 Parameter Expansion .. 37
 2.6.3 Command Substitution .. 40
 2.6.4 Arithmetic Expansion ... 41
 2.6.5 Field Splitting.. 42
 2.6.6 Pathname Expansion... 42
 2.6.7 Quote Removal... 42
 2.7 Redirection ... 43
 2.7.1 Redirecting Input ... 44
 2.7.2 Redirecting Output.. 44
 2.7.3 Appending Redirected Output ... 44
 2.7.4 Here-Document.. 44
 2.7.5 Duplicating an Input File Descriptor... 45
 2.7.6 Duplicating an Output File Descriptor ... 45
 2.7.7 Open File Descriptors for Reading and Writing................................ 46
 2.8 Exit Status and Errors .. 46
 2.8.1 Consequences of Shell Errors .. 46
 2.8.2 Exit Status for Commands ... 46
 2.9 Shell Commands ... 47
 2.9.1 Simple Commands .. 47
 2.9.1.1 Command Search and Execution .. 48
 2.9.2 Pipelines... 49
 2.9.3 Lists... 50
 2.9.3.1 Asynchronous Lists .. 50
 2.9.3.2 Sequential Lists.. 51
 2.9.3.3 AND Lists ... 51
 2.9.3.4 OR Lists... 51
 2.9.4 Compound Commands.. 52
 2.9.4.1 Grouping Commands .. 52
 2.9.4.2 The for Loop... 52
 2.9.4.3 Case Conditional Construct ... 53
 2.9.4.4 The if Conditional Construct.. 53
 2.9.4.5 The while Loop.. 54
 2.9.4.6 The until Loop ... 54
 2.9.5 Function Definition Command... 54
 2.10 Shell Grammar... 55
 2.10.1 Shell Grammar Lexical Conventions... 55
 2.10.2 Shell Grammar Rules .. 56
 2.11 Signals and Error Handling .. 61
 2.12 Shell Execution Environment... 61
 2.13 Pattern Matching Notation... 62
 2.13.1 Patterns Matching a Single Character ... 62
 2.13.2 Patterns Matching Multiple Characters .. 63
 2.13.3 Patterns Used for Filename Expansion ... 63
 2.14 Special Built-In Utilities... 64

viii Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Contents

 break .. 65
 colon .. 67
 continue ... 69
 dot .. 71
 eval .. 73
 exec .. 75
 exit ... 77
 export ... 79
 readonly ... 81
 return .. 83
 set ... 85
 shift .. 91
 times .. 93
 trap .. 95
 unset .. 98

Chapter 3 Batch Environment Services ... 101
 3.1 General Concepts.. 101
 3.1.1 Batch Client-Server Interaction... 101
 3.1.2 Batch Queues .. 101
 3.1.3 Batch Job Creation ... 102
 3.1.4 Batch Job Tracking ... 102
 3.1.5 Batch Job Routing .. 102
 3.1.6 Batch Job Execution... 103
 3.1.7 Batch Job Exit .. 103
 3.1.8 Batch Job Abort .. 103
 3.1.9 Batch Authorization .. 103
 3.1.10 Batch Administration.. 104
 3.1.11 Batch Notification.. 104
 3.2 Batch Services .. 104
 3.2.1 Batch Job States .. 105
 3.2.2 Deferred Batch Services.. 106
 3.2.2.1 Batch Job Execution.. 106
 3.2.2.2 Batch Job Routing ... 113
 3.2.2.3 Batch Job Exit ... 113
 3.2.2.4 Batch Server Restart ... 114
 3.2.2.5 Batch Job Abort ... 114
 3.2.3 Requested Batch Services... 115
 3.2.3.1 Delete Batch Job Request... 115
 3.2.3.2 Hold Batch Job Request ... 116
 3.2.3.3 Batch Job Message Request... 116
 3.2.3.4 Batch Job Status Request ... 117
 3.2.3.5 Locate Batch Job Request .. 117
 3.2.3.6 Modify Batch Job Request... 117
 3.2.3.7 Move Batch Job Request.. 118
 3.2.3.8 Queue Batch Job Request .. 118
 3.2.3.9 Batch Queue Status Request... 119
 3.2.3.10 Release Batch Job Request... 119

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. ix

Contents

 3.2.3.11 Rerun Batch Job Request ... 120
 3.2.3.12 Select Batch Jobs Request .. 120
 3.2.3.13 Server Shutdown Request... 120
 3.2.3.14 Server Status Request... 121
 3.2.3.15 Signal Batch Job Request ... 121
 3.2.3.16 Track Batch Job Request .. 121
 3.3 Common Behavior for Batch Environment Utilities 122
 3.3.1 Batch Job Identifier .. 122
 3.3.2 Destination .. 123
 3.3.3 Multiple Keyword-Value Pairs ... 123

Chapter 4 Utilities... 125

 Index... 1079

List of Figures

4-1 pax Format Archive Example.. 710

List of Tables

1-1 Actions when Creating a File that Already Exists 5
1-2 Selected ISO C Standard Operators and Control Flow Keywords...... 8
1-3 Utility Limit Minimum Values.. 17
1-4 Symbolic Utility Limits... 18
1-5 Regular Built-In Utilities .. 28
3-1 Batch Utilities.. 101
3-2 Environment Variable Summary.. 105
3-3 Next State Table ... 107
3-4 Results/Output Table ... 108
3-5 Batch Services Summary.. 115
4-1 Expressions in Decreasing Precedence in awk ... 156
4-2 Escape Sequences in awk .. 162
4-3 Operators in bc.. 198
4-4 Programming Environments: Type Sizes ... 215
4-5 Programming Environments: c99 and cc Arguments............................. 216
4-6 ASCII to EBCDIC Conversion... 303
4-7 ASCII to IBM EBCDIC Conversion.. 304
4-8 File Utility Output Strings ... 444
4-9 Table Size Declarations in lex .. 535
4-10 Escape Sequences in lex .. 537
4-11 ERE Precedence in lex.. 538
4-12 Named Characters in od ... 679
4-13 ustar Header Block .. 715
4-14 ustar mode Field .. 716
4-15 Octet-Oriented cpio Archive Entry.. 718
4-16 Values for cpio c_mode Field .. 719
4-17 Variable Names and Default Headers in ps.. 752

x Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Contents

4-18 Environment Variable Values (Utilities) ... 801
4-19 Control Character Names in stty .. 886
4-20 Circumflex Control Characters in stty... 886
4-21 uuencode Base64 Values... 970
4-22 Internal Limits in yacc ... 1072

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xi

Contents

xii Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Introduction

Note: This introduction is not part of IEEE Std 1003.1-2001, Standard for Information Technology —
Portable Operating System Interface (POSIX).

This standard has been jointly developed by the IEEE and The Open Group. It is both an IEEE
Standard and an Open Group Technical Standard.

The Austin Group

This standard was developed, and is maintained, by a joint working group of members of the
IEEE Portable Applications Standards Committee, members of The Open Group, and members
of ISO/IEC Joint Technical Committee 1. This joint working group is known as the Austin
Group.3 The Austin Group arose out of discussions amongst the parties which started in early
1998, leading to an initial meeting and formation of the group in September 1998. The purpose of
the Austin Group has been to revise, combine, and update the following standards: ISO/IEC
9945-1, ISO/IEC 9945-2, IEEE Std 1003.1, IEEE Std 1003.2, and the Base Specifications of The
Open Group Single UNIX Specification.

After two initial meetings, an agreement was signed in July 1999 between The Open Group and
the Institute of Electrical and Electronics Engineers (IEEE), Inc., to formalize the project with the
first draft of the revised specifications being made available at the same time. Under this
agreement, The Open Group and IEEE agreed to share joint copyright of the resulting work. The
Open Group has provided the chair and secretariat for the Austin Group.

The base document for the revision was The Open Group’s Base volumes of its Single UNIX
Specification, Version 2. These were selected since they were a superset of the existing POSIX.1
and POSIX.2 specifications and had some organizational aspects that would benefit the audience
for the new revision.

The approach to specification development has been one of ‘‘write once, adopt everywhere’’,
with the deliverables being a set of specifications that carry the IEEE POSIX designation and The
Open Group’s Technical Standard designation, and, if approved, an ISO/IEC designation. This
set of specifications forms the core of the Single UNIX Specification, Version 3.

This unique development has combined both the industry-led efforts and the formal
standardization activities into a single initiative, and included a wide spectrum of participants.
The Austin Group continues as the maintenance body for this document.

Anyone wishing to participate in the Austin Group should contact the chair with their request.
There are no fees for participation or membership. You may participate as an observer or as a
contributor. You do not have to attend face-to-face meetings to participate; electronic
participation is most welcome. For more information on the Austin Group and how to
participate, see http://www.opengroup.org/austin.

3. The Austin Group is named after the location of the inaugural meeting held at the IBM facility in Austin, Texas in September
1998.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xiii

Introduction

Background

The developers of this standard represent a cross section of hardware manufacturers, vendors of
operating systems and other software development tools, software designers, consultants,
academics, authors, applications programmers, and others.

Conceptually, this standard describes a set of fundamental services needed for the efficient
construction of application programs. Access to these services has been provided by defining an
interface, using the C programming language, a command interpreter, and common utility
programs that establish standard semantics and syntax. Since this interface enables application
writers to write portable applications—it was developed with that goal in mind—it has been
designated POSIX,4 an acronym for Portable Operating System Interface.

Although originated to refer to the original IEEE Std 1003.1-1988, the name POSIX more correctly
refers to a family of related standards: IEEE Std 1003.n and the parts of ISO/IEC 9945. In earlier
editions of the IEEE standard, the term POSIX was used as a synonym for IEEE Std 1003.1-1988.
A preferred term, POSIX.1, emerged. This maintained the advantages of readability of the
symbol ‘‘POSIX’’ without being ambiguous with the POSIX family of standards.

Audience

The intended audience for this standard is all persons concerned with an industry-wide standard
operating system based on the UNIX system. This includes at least four groups of people:

1. Persons buying hardware and software systems

2. Persons managing companies that are deciding on future corporate computing directions

3. Persons implementing operating systems, and especially

4. Persons developing applications where portability is an objective

Purpose

Several principles guided the development of this standard:

• Application-Oriented

The basic goal was to promote portability of application programs across UNIX system
environments by developing a clear, consistent, and unambiguous standard for the interface
specification of a portable operating system based on the UNIX system documentation. This
standard codifies the common, existing definition of the UNIX system.

• Interface, Not Implementation

This standard defines an interface, not an implementation. No distinction is made between
library functions and system calls; both are referred to as functions. No details of the
implementation of any function are given (although historical practice is sometimes
indicated in the RATIONALE section). Symbolic names are given for constants (such as
signals and error numbers) rather than numbers.

4. The name POSIX was suggested by Richard Stallman. It is expected to be pronounced pahz-icks , as in positive , not poh-six , or
other variations. The pronunciation has been published in an attempt to promulgate a standardized way of referring to a
standard operating system interface.

xiv Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Introduction

• Source, Not Object, Portability

This standard has been written so that a program written and translated for execution on one
conforming implementation may also be translated for execution on another conforming
implementation. This standard does not guarantee that executable (object or binary) code
will execute under a different conforming implementation than that for which it was
translated, even if the underlying hardware is identical.

• The C Language

The system interfaces and header definitions are written in terms of the standard C language
as specified in the ISO C standard.

• No Superuser, No System Administration

There was no intention to specify all aspects of an operating system. System administration
facilities and functions are excluded from this standard, and functions usable only by the
superuser have not been included. Still, an implementation of the standard interface may also
implement features not in this standard. This standard is also not concerned with hardware
constraints or system maintenance.

• Minimal Interface, Minimally Defined

In keeping with the historical design principles of the UNIX system, the mandatory core
facilities of this standard have been kept as minimal as possible. Additional capabilities have
been added as optional extensions.

• Broadly Implementable

The developers of this standard endeavored to make all specified functions implementable
across a wide range of existing and potential systems, including:

1. All of the current major systems that are ultimately derived from the original UNIX
system code (Version 7 or later)

2. Compatible systems that are not derived from the original UNIX system code

3. Emulations hosted on entirely different operating systems

4. Networked systems

5. Distributed systems

6. Systems running on a broad range of hardware

No direct references to this goal appear in this standard, but some results of it are mentioned
in the Rationale (Informative) volume.

• Minimal Changes to Historical Implementations

When the original version of IEEE Std 1003.1 was published, there were no known historical
implementations that did not have to change. However, there was a broad consensus on a set
of functions, types, definitions, and concepts that formed an interface that was common to
most historical implementations.

The adoption of the 1988 and 1990 IEEE system interface standards, the 1992 IEEE shell and
utilities standard, the various Open Group (formerly X/Open) specifications, and the
subsequent revisions and addenda to all of them have consolidated this consensus, and this
revision reflects the significantly increased level of consensus arrived at since the original
versions. The earlier standards and their modifications specified a number of areas where
consensus had not been reached before, and these are now reflected in this revision. The
authors of the original versions tried, as much as possible, to follow the principles below

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xv

Introduction

when creating new specifications:

1. By standardizing an interface like one in an historical implementation; for example,
directories

2. By specifying an interface that is readily implementable in terms of, and backwards-
compatible with, historical implementations, such as the extended tar format defined in
the pax utility

3. By specifying an interface that, when added to an historical implementation, will not
conflict with it; for example, the sigaction () function

This revision tries to minimize the number of changes required to implementations which
conform to the earlier versions of the approved standards to bring them into conformance
with the current standard. Specifically, the scope of this work excluded doing any ‘‘new’’
work, but rather collecting into a single document what had been spread across a number of
documents, and presenting it in what had been proven in practice to be a more effective way.
Some changes to prior conforming implementations were unavoidable, primarily as a
consequence of resolving conflicts found in prior revisions, or which became apparent when
bringing the various pieces together.

However, since it references the 1999 version of the ISO C standard, and no longer supports
‘‘Common Usage C’’, there are a number of unavoidable changes. Applications portability is
similarly affected.

This standard is specifically not a codification of a particular vendor’s product.

It should be noted that implementations will have different kinds of extensions. Some will
reflect ‘‘historical usage’’ and will be preserved for execution of pre-existing applications.
These functions should be considered ‘‘obsolescent’’ and the standard functions used for
new applications. Some extensions will represent functions beyond the scope of this
standard. These need to be used with careful management to be able to adapt to future
extensions of this standard and/or port to implementations that provide these services in a
different manner.

• Minimal Changes to Existing Application Code

A goal of this standard was to minimize additional work for the developers of applications.
However, because every known historical implementation will have to change at least
slightly to conform, some applications will have to change.

This Standard

This standard defines the Portable Operating System Interface (POSIX) requirements and
consists of the following volumes:

• Base Definitions

• Shell and Utilities (this volume)

• System Interfaces

• Rationale (Informative)

xvi Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Introduction

This Volume

The Shell and Utilities volume describes the commands and utilities offered to application
programs on POSIX-conformant systems. Readers are expected to be familiar with the Base
Definitions volume.

This volume is structured as follows:

• Chapter 1 explains the status of this volume and its relationship to other formal standards. It
also describes the defaults used by the utility descriptions in Chapter 4.

• Chapter 2 describes the command language used in POSIX-conformant systems.

• Chapter 4 consists of reference pages for all utilities available on POSIX-conformant systems.

Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this standard. In the text, this
standard is referred to as IEEE Std 1003.1-2001, which is technically identical to The Open Group
Base Specifications, Issue 6.

The typographical conventions listed here are for ease of reading only. Editorial inconsistencies
in the use of typography are unintentional and have no normative meaning in this standard.

Reference Example Notes___LL LL LL LL

C-Language Data Structure aiocb
C-Language Data Structure Member aio_lio_opcode
C-Language Data Type long
C-Language External Variable errno
C-Language Function system()
C-Language Function Argument arg1
C-Language Function Family exec
C-Language Header <sys/stat.h>
C-Language Keyword return
C-Language Macro with Argument assert()
C-Language Macro with No Argument INET_ADDRSTRLEN
C-Language Preprocessing Directive #define
Commands within a Utility a, c
Conversion Specification, Specifier/Modifier Character %A, g, E 1
Environment Variable PATH
Error Number [EINTR]
Example Output Hello, World
Filename /tmp
Literal Character ’c’, ’\r’, ’\’ 2
Literal String "abcde" 2
Optional Items in Utility Syntax []
Parameter <directory pathname>
Special Character <newline> 3
Symbolic Constant _POSIX_VDISABLE
Symbolic Limit, Configuration Value {LINE_MAX} 4___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xvii

Introduction

Reference Example Notes___LL LL LL LL

Syntax #include <sys/stat.h>
User Input and Example Code echo Hello, World 5
Utility Name awk
Utility Operand file_name
Utility Option −c
Utility Option with Option-Argument −w width___LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

Notes:

1. Conversion specifications, specifier characters, and modifier characters are used primarily
in date-related functions and utilities and the fprintf and fscanf formatting functions.

2. Unless otherwise noted, the quotes shall not be used as input or output. When used in a
list item, the quotes are omitted. For literal characters, ’\’ (or any of the other sequences
such as ’’’) is the same as the C constant ’\\’ (or ’\’’).

3. The style selected for some of the special characters, such as <newline>, matches the form
of the input given to the localedef utility. Generally, the characters selected for this special
treatment are those that are not visually distinct, such as the control characters <tab> or
<newline>.

4. Names surrounded by braces represent symbolic limits or configuration values which
may be declared in appropriate headers by means of the C #define construct.

5. Brackets shown in this font, "[]", are part of the syntax and do not indicate optional
items. In syntax the ’|’ symbol is used to separate alternatives, and ellipses ("...") are
used to show that additional arguments are optional.

Shading is used to identify extensions and options; see Section 1.8.1 (on page 9).

Footnotes and notes within the body of the normative text are for information only
(informative).

Informative sections (such as Rationale, Change History, Application Usage, and so on) are
denoted by continuous shading bars in the margins.

Ranges of values are indicated with parentheses or brackets as follows:

• (a,b) means the range of all values from a to b, including neither a nor b.

• [a,b] means the range of all values from a to b, including a and b.

• [a,b) means the range of all values from a to b, including a, but not b.

• (a,b] means the range of all values from a to b, including b, but not a.

xviii Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Participants

The Austin Group

This standard was prepared by the Austin Group, sponsored by the Portable Applications
Standards Committee of the IEEE Computer Society, The Open Group, and ISO/SC22 WG15. At
the time of approval, the membership of the Austin Group was as follows.

Andrew Josey, Chair
Donald W. Cragun, Organizational Representative, IEEE PASC
Nicholas Stoughton, Organizational Representative, ISO/SC22 WG15
Mark Brown, Organizational Representative, The Open Group
Cathy Hughes, Technical Editor

Austin Group Technical Reviewers

Peter Anvin
Bouazza Bachar
Theodore P. Baker
Walter Briscoe
Mark Brown
Dave Butenhof
Geoff Clare
Donald W. Cragun
Lee Damico
Ulrich Drepper
Paul Eggert
Joanna Farley
Clive D.W. Feather
Andrew Gollan

Michael Gonzalez
Joseph M. Gwinn
Jon Hitchcock
Yvette Ho Sang
Cathy Hughes
Lowell G. Johnson
Andrew Josey
Michael Kavanaugh
David Korn
Marc Aurele La France
Jim Meyering
Gary Miller
Finnbarr P. Murphy
Joseph S. Myers

Sandra O’Donnell
Frank Prindle
Curtis Royster Jr.
Glen Seeds
Keld Jorn Simonsen
Raja Srinivasan
Nicholas Stoughton
Donn S. Terry
Fred Tydeman
Peter Van Der Veen
James Youngman
Jim Zepeda
Jason Zions

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xix

Participants

Austin Group Working Group Members

Harold C. Adams
Peter Anvin
Pierre-Jean Arcos
Jay Ashford
Bouazza Bachar
Theodore P. Baker
Robert Barned
Joel Berman
David J. Blackwood
Shirley Bockstahler-Brandt
James Bottomley
Walter Briscoe
Andries Brouwer
Mark Brown
Eric W. Burger
Alan Burns
Andries Brouwer
Dave Butenhof
Keith Chow
Geoff Clare
Donald W. Cragun
Lee Damico
Juan Antonio De La Puente
Ming De Zhou
Steven J. Dovich
Richard P. Draves
Ulrich Drepper
Paul Eggert
Philip H. Enslow
Joanna Farley
Clive D.W. Feather
Pete Forman
Mark Funkenhauser
Lois Goldthwaite
Andrew Gollan

Michael Gonzalez
Karen D. Gordon
Joseph M. Gwinn
Steven A. Haaser
Charles E. Hammons
Chris J. Harding
Barry Hedquist
Vincent E. Henley
Karl Heubaum
Jon Hitchcock
Yvette Ho Sang
Niklas Holsti
Thomas Hosmer
Cathy Hughes
Jim D. Isaak
Lowell G. Johnson
Michael B. Jones
Andrew Josey
Michael J. Karels
Michael Kavanaugh
David Korn
Steven Kramer
Thomas M. Kurihara
Marc Aurele La France
C. Douglass Locke
Nick Maclaren
Roger J. Martin
Craig H. Meyer
Jim Meyering
Gary Miller
Finnbarr P. Murphy
Joseph S. Myers
John Napier
Peter E. Obermayer
James T. Oblinger

Sandra O’Donnell
Frank Prindle
Francois Riche
John D. Riley
Andrew K. Roach
Helmut Roth
Jaideep Roy
Curtis Royster Jr.
Stephen C. Schwarm
Glen Seeds
Richard Seibel
David L. Shroads Jr.
W. Olin Sibert
Keld Jorn Simonsen
Curtis Smith
Raja Srinivasan
Nicholas Stoughton
Marc J. Teller
Donn S. Terry
Fred Tydeman
Mark-Rene Uchida
Scott A. Valcourt
Peter Van Der Veen
Michael W. Vannier
Eric Vought
Frederick N. Webb
Paul A.T. Wolfgang
Garrett Wollman
James Youngman
Oren Yuen
Janusz Zalewski
Jim Zepeda
Jason Zions

xx Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Participants

The Open Group

When The Open Group approved the Base Specifications, Issue 6 on 12 September 2001, the
membership of The Open Group Base Working Group was as follows.

Andrew Josey, Chair
Finnbarr P. Murphy, Vice-Chair
Mark Brown, Austin Group Liaison
Cathy Hughes, Technical Editor

Base Working Group Members

Bouazza Bachar
Mark Brown
Dave Butenhof
Donald W. Cragun
Larry Dwyer

Joanna Farley
Andrew Gollan
Karen D. Gordon
Gary Miller
Finnbarr P. Murphy

Frank Prindle
Andrew K. Roach
Curtis Royster Jr.
Nicholas Stoughton
Kenjiro Tsuji

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xxi

Participants

IEEE

When the IEEE Standards Board approved IEEE Std 1003.1-2001 on 6 December 2001, the
membership of the committees was as follows.

Portable Applications Standards Committee (PASC)

Lowell G. Johnson, Chair
Joseph M. Gwinn, Vice-Chair
Jay Ashford, Functional Chair
Andrew Josey, Functional Chair
Curtis Royster Jr., Functional Chair
Nicholas Stoughton, Secretary

Balloting Committee

The following members of the balloting committee voted on IEEE Std 1003.1-2001. Balloters may
have voted for approval, disapproval, or abstention.

Harold C. Adams
Pierre-Jean Arcos
Jay Ashford
Theodore P. Baker
Robert Barned
David J. Blackwood
Shirley Bockstahler-Brandt
James Bottomley
Mark Brown
Eric W. Burger
Alan Burns
Dave Butenhof
Keith Chow
Donald W. Cragun
Juan Antonio De La Puente
Ming De Zhou
Steven J. Dovich
Richard P. Draves
Philip H. Enslow
Michael Gonzalez
Karen D. Gordon
Joseph M. Gwinn

Steven A. Haaser
Charles E. Hammons
Chris J. Harding
Barry Hedquist
Vincent E. Henley
Karl Heubaum
Niklas Holsti
Thomas Hosmer
Jim D. Isaak
Lowell G. Johnson
Michael B. Jones
Andrew Josey
Michael J. Karels
Steven Kramer
Thomas M. Kurihara
C. Douglass Locke
Roger J. Martin
Craig H. Meyer
Finnbarr P. Murphy
John Napier
Peter E. Obermayer
James T. Oblinger

Frank Prindle
Francois Riche
John D. Riley
Andrew K. Roach
Helmut Roth
Jaideep Roy
Curtis Royster Jr.
Stephen C. Schwarm
Richard Seibel
David L. Shroads Jr.
W. Olin Sibert
Keld Jorn Simonsen
Nicholas Stoughton
Donn S. Terry
Mark-Rene Uchida
Scott A. Valcourt
Michael W. Vannier
Frederick N. Webb
Paul A.T. Wolfgang
Oren Yuen
Janusz Zalewski

The following organizational representative voted on this standard:

Andrew Josey, X/Open Company Ltd.

xxii Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Participants

IEEE-SA Standards Board

When the IEEE-SA Standards Board approved IEEE Std 1003.1-2001 on 6 December 2001, it had
the following membership:

Donald N. Heirman, Chair
James T. Carlo, Vice-Chair
Judith Gorman, Secretary

Satish K. Aggarwal
Mark D. Bowman
Gary R. Engmann
Harold E. Epstein
H. Landis Floyd
Jay Forster*
Howard M. Frazier
Ruben D. Garzon

James H. Gurney
Richard J. Holleman
Lowell G. Johnson
Robert J. Kennelly
Joseph L. Koepfinger*
Peter H. Lips
L. Bruce McClung
Daleep C. Mohla

James W. Moore
Robert F. Munzner
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Akio Tojo
Donald W. Zipse

Also included are the following non-voting IEEE-SA Standards Board liaisons:

Alan Cookson, NIST Representative
Donald R. Volzka, TAB Representative
Yvette Ho Sang, Don Messina, Savoula Amanatidis, IEEE Project Editors

* Member Emeritus

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xxiii

Trademarks

The following information is given for the convenience of users of this standard and does not
constitute endorsement of these products by The Open Group or the IEEE. There may be other
products mentioned in the text that might be covered by trademark protection and readers are
advised to verify them independently.

1003.1TM is a trademark of the Institute of Electrical and Electronic Engineers, Inc.

AIX is a registered trademark of IBM Corporation.

AT&T is a registered trademark of AT&T in the U.S.A. and other countries.

BSDTM is a trademark of the University of California, Berkeley, U.S.A.

Hewlett-Packard , HP , and HP-UX are registered trademarks of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

Motif , OSF/1 , UNIX , and the ‘‘X Device’’ are registered trademarks and IT DialToneTM and
The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

POSIX is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

/usr/group is a registered trademark of UniForum, the International Network of UNIX System
Users.

xxiv Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Acknowledgements

The contributions of the following organizations to the development of IEEE Std 1003.1-2001 are
gratefully acknowledged:

• AT&T for permission to reproduce portions of its copyrighted System V Interface Definition
(SVID) and material from the UNIX System V Release 2.0 documentation.

• The SC22 WG14 Committees.

This standard was prepared by the Austin Group, a joint working group of the IEEE, The Open
Group, and ISO SC22 WG15.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xxv

Referenced Documents

Normative References

Normative references for this standard are defined in the Base Definitions volume.

Informative References

The following documents are referenced in this standard:

1984 /usr/group Standard
/usr/group Standards Committee, Santa Clara, CA, UniForum 1984.

Almasi and Gottlieb
George S. Almasi and Allan Gottlieb, Highly Parallel Computing, The Benjamin/Cummings
Publishing Company, Inc., 1989, ISBN: 0-8053-0177-1.

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI X3.226-1994
American National Standard for Information Systems: Standard X3.226-1994, Programming
Language Common LISP.

Brawer
Steven Brawer, Introduction to Parallel Programming, Academic Press, 1989,
ISBN: 0-12-128470-0.

DeRemer and Pennello Article
DeRemer, Frank and Pennello, Thomas J., Efficient Computation of LALR(1) Look-Ahead Sets,
SigPlan Notices, Volume 15, No. 8, August 1979.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

FIPS 151-1
Federal Information Procurement Standard (FIPS) 151-1. Portable Operating System
Interface (POSIX)—Part 1: System Application Program Interface (API) [C Language].

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2, Portable Operating System
Interface (POSIX)—Part 1: System Application Program Interface (API) [C Language].

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

IEC 60559: 1989
IEC 60559: 1989, Binary Floating-Point Arithmetic for Microprocessor Systems (previously
designated IEC 559: 1989).

IEEE Std 754-1985
IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

IEEE Std 854-1987
IEEE Std 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic.

xxvi Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Referenced Documents

IEEE Std 1003.9-1992
IEEE Std 1003.9-1992, IEEE Standard for Information Technology — POSIX FORTRAN 77
Language Interfaces — Part 1: Binding for System Application Program Interface API.

IETF RFC 791
Internet Protocol, Version 4 (IPv4), September 1981.

IETF RFC 819
The Domain Naming Convention for Internet User Applications, Z. Su, J. Postel, August
1982.

IETF RFC 822
Standard for the Format of ARPA Internet Text Messages, D.H. Crocker, August 1982.

IETF RFC 919
Broadcasting Internet Datagrams, J. Mogul, October 1984.

IETF RFC 920
Domain Requirements, J. Postel, J. Reynolds, October 1984.

IETF RFC 921
Domain Name System Implementation Schedule, J. Postel, October 1984.

IETF RFC 922
Broadcasting Internet Datagrams in the Presence of Subnets, J. Mogul, October 1984.

IETF RFC 1034
Domain Names — Concepts and Facilities, P. Mockapetris, November 1987.

IETF RFC 1035
Domain Names — Implementation and Specification, P. Mockapetris, November 1987.

IETF RFC 1123
Requirements for Internet Hosts — Application and Support, R. Braden, October 1989.

IETF RFC 1886
DNS Extensions to Support Internet Protocol, Version 6 (IPv6), C. Huitema, S. Thomson,
December 1995.

IETF RFC 2045
Multipurpose Internet Mail Extensions (MIME), Part 1: Format of Internet Message Bodies,
N. Freed, N. Borenstein, November 1996.

IETF RFC 2373
Internet Protocol, Version 6 (IPv6) Addressing Architecture, S. Deering, R. Hinden, July
1998.

IETF RFC 2460
Internet Protocol, Version 6 (IPv6), S. Deering, R. Hinden, December 1998.

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304),
published by The Open Group.

ISO C (1990)
ISO/IEC 9899: 1990, Programming Languages — C, including Amendment 1: 1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO 2375: 1985
ISO 2375: 1985, Data Processing — Procedure for Registration of Escape Sequences.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xxvii

Referenced Documents

ISO 8652: 1987
ISO 8652: 1987, Programming Languages — Ada (technically identical to ANSI standard
1815A-1983).

ISO/IEC 1539: 1990
ISO/IEC 1539: 1990, Information Technology — Programming Languages — Fortran
(technically identical to the ANSI X3.9-1978 standard [FORTRAN 77]).

ISO/IEC 4873: 1991
ISO/IEC 4873: 1991, Information Technology — ISO 8-bit Code for Information Interchange
— Structure and Rules for Implementation.

ISO/IEC 6429: 1992
ISO/IEC 6429: 1992, Information Technology — Control Functions for Coded Character
Sets.

ISO/IEC 6937: 1994
ISO/IEC 6937: 1994, Information Technology — Coded Character Set for Text
Communication — Latin Alphabet.

ISO/IEC 8802-3: 1996
ISO/IEC 8802-3: 1996, Information Technology — Telecommunications and Information
Exchange Between Systems — Local and Metropolitan Area Networks — Specific
Requirements — Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications.

ISO/IEC 8859
ISO/IEC 8859, Information Technology — 8-Bit Single-Byte Coded Graphic Character Sets:

Part 1: Latin Alphabet No. 1
Part 2: Latin Alphabet No. 2
Part 3: Latin Alphabet No. 3
Part 4: Latin Alphabet No. 4
Part 5: Latin/Cyrillic Alphabet
Part 6: Latin/Arabic Alphabet
Part 7: Latin/Greek Alphabet
Part 8: Latin/Hebrew Alphabet
Part 9: Latin Alphabet No. 5
Part 10: Latin Alphabet No. 6
Part 13: Latin Alphabet No. 7
Part 14: Latin Alphabet No. 8
Part 15: Latin Alphabet No. 9

ISO POSIX-1: 1996
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995, and 1003.1i-1995.

ISO POSIX-2: 1993
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to ANSI/IEEE Std 1003.2-1992, as amended
by ANSI/IEEE Std 1003.2a-1992).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

xxviii Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Referenced Documents

Issue 2
X/Open Portability Guide, January 1987:

• Volume 1: XVS Commands and Utilities (ISBN: 0-444-70174-5)

• Volume 2: XVS System Calls and Libraries (ISBN: 0-444-70175-3)

Issue 3
X/Open Specification, 1988, 1989, February 1992:

• Commands and Utilities, Issue 3 (ISBN: 1-872630-36-7, C211); this specification was
formerly X/Open Portability Guide, Issue 3, Volume 1, January 1989, XSI Commands
and Utilities (ISBN: 0-13-685835-X, XO/XPG/89/002)

• System Interfaces and Headers, Issue 3 (ISBN: 1-872630-37-5, C212); this specification
was formerly X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System
Interface and Headers (ISBN: 0-13-685843-0, XO/XPG/89/003)

• Curses Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive; this specification was formerly
X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

• Headers Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

Issue 4
CAE Specification, July 1992, published by The Open Group:

• System Interface Definitions (XBD), Issue 4 (ISBN: 1-872630-46-4, C204)

• Commands and Utilities (XCU), Issue 4 (ISBN: 1-872630-48-0, C203)

• System Interfaces and Headers (XSH), Issue 4 (ISBN: 1-872630-47-2, C202)

Issue 4, Version 2
CAE Specification, August 1994, published by The Open Group:

• System Interface Definitions (XBD), Issue 4, Version 2 (ISBN: 1-85912-036-9, C434)

• Commands and Utilities (XCU), Issue 4, Version 2 (ISBN: 1-85912-034-2, C436)

• System Interfaces and Headers (XSH), Issue 4, Version 2 (ISBN: 1-85912-037-7, C435)

Issue 5
Technical Standard, February 1997, published by The Open Group:

• System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)

• Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)

• System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Knuth Article
Knuth, Donald E., On the Translation of Languages from Left to Right, Information and Control,
Volume 8, No. 6, October 1965.

KornShell
Bolsky, Morris I. and Korn, David G., The New KornShell Command and Programming
Language, March 1995, Prentice Hall.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xxix

Referenced Documents

MSE Working Draft
Working draft of ISO/IEC 9899: 1990/Add3: Draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

POSIX.0: 1995
IEEE Std 1003.0-1995, IEEE Guide to the POSIX Open System Environment (OSE) (identical
to ISO/IEC TR 14252).

POSIX.1: 1988
IEEE Std 1003.1-1988, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1: 1990
IEEE Std 1003.1-1990, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1a
P1003.1a, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) — (C Language)
Amendment

POSIX.1d: 1999
IEEE Std 1003.1d-1999, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 4: Additional Realtime Extensions [C Language].

POSIX.1g: 2000
IEEE Std 1003.1g-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 6: Protocol-Independent Interfaces (PII).

POSIX.1j: 2000
IEEE Std 1003.1j-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 5: Advanced Realtime Extensions [C Language].

POSIX.1q: 2000
IEEE Std 1003.1q-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 7: Tracing [C Language].

POSIX.2b
P1003.2b, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities — Amendment

POSIX.2d:-1994
IEEE Std 1003.2d: 1994, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: Batch
Environment.

POSIX.13:-1998
IEEE Std 1003.13: 1998, IEEE Standard for Information Technology — Standardized
Application Environment Profile (AEP) — POSIX Realtime Application Support.

xxx Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Referenced Documents

Sarwate Article
Sarwate, Dilip V., Computation of Cyclic Redundancy Checks via Table Lookup, Communications
of the ACM, Volume 30, No. 8, August 1988.

Sprunt, Sha, and Lehoczky
Sprunt, B., Sha, L., and Lehoczky, J.P., Aperiodic Task Scheduling for Hard Real-Time Systems,
The Journal of Real-Time Systems, Volume 1, 1989, Pages 27-60.

SVID, Issue 1
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
1; Morristown, NJ, UNIX Press, 1985.

SVID, Issue 2
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
2; Morristown, NJ, UNIX Press, 1986.

SVID, Issue 3
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
3; Morristown, NJ, UNIX Press, 1989.

The AWK Programming Language
Aho, Alfred V., Kernighan, Brian W., and Weinberger, Peter J., The AWK Programming
Language, Reading, MA, Addison-Wesley 1988.

UNIX Programmer’s Manual
American Telephone and Telegraph Company, UNIX Time-Sharing System: UNIX
Programmer’s Manual, 7th Edition, Murray Hill, NJ, Bell Telephone Laboratories, January
1979.

XNS, Issue 4
CAE Specification, August 1994, Networking Services, Issue 4 (ISBN: 1-85912-049-0, C438),
published by The Open Group.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
published by The Open Group.

XNS, Issue 5.2
Technical Standard, January 2000, Networking Services (XNS), Issue 5.2
(ISBN: 1-85912-241-8, C808), published by The Open Group.

X/Open Curses, Issue 4, Version 2
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3,
C610), published by The Open Group.

Yacc
Yacc: Yet Another Compiler Compiler, Stephen C. Johnson, 1978.

Source Documents

Parts of the following documents were used to create the base documents for this standard:

AIX 3.2 Manual
AIX Version 3.2 For RISC System/6000, Technical Reference: Base Operating System and
Extensions, 1990, 1992 (Part No. SC23-2382-00).

OSF/1
OSF/1 Programmer’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. xxxi

Referenced Documents

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

System V Release 2.0

— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX SVR4.2 (1992) (ISBN: 0-13-017658-3).

xxxii Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

unget Utilities

36664 NAME
36665 unget — undo a previous get of an SCCS file (DEVELOPMENT)

36666 SYNOPSIS
36667 XSI unget [−ns][−r SID] file...
36668

36669 DESCRIPTION
36670 The unget utility shall reverse the effect of a get −e done prior to creating the intended new delta.

36671 OPTIONS
36672 The unget utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
36673 12.2, Utility Syntax Guidelines.

36674 The following options shall be supported:

36675 −r SID Uniquely identify which delta is no longer intended. (This would have been
36676 specified by get as the new delta.) The use of this option is necessary only if two or
36677 more outstanding get commands for editing on the same SCCS file were done by
36678 the same person (login name).

36679 −s Suppress the writing to standard output of the intended delta’s SID.

36680 −n Retain the file that was obtained by get, which would normally be removed from
36681 the current directory.

36682 OPERANDS
36683 The following operands shall be supported:

36684 file A pathname of an existing SCCS file or a directory. If file is a directory, the unget
36685 utility shall behave as though each file in the directory were specified as a named
36686 file, except that non-SCCS files (last component of the pathname does not begin
36687 with s.) and unreadable files shall be silently ignored.

36688 If exactly one file operand appears, and it is ’−’, the standard input shall be read;
36689 each line of the standard input shall be taken to be the name of an SCCS file to be
36690 processed. Non-SCCS files and unreadable files shall be silently ignored.

36691 STDIN
36692 The standard input shall be a text file used only when the file operand is specified as ’−’. Each
36693 line of the text file shall be interpreted as an SCCS pathname.

36694 INPUT FILES
36695 Any SCCS files processed shall be files of an unspecified format.

36696 ENVIRONMENT VARIABLES
36697 The following environment variables shall affect the execution of unget:

36698 LANG Provide a default value for the internationalization variables that are unset or null.
36699 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
36700 Internationalization Variables for the precedence of internationalization variables
36701 used to determine the values of locale categories.)

36702 LC_ALL If set to a non-empty string value, override the values of all the other
36703 internationalization variables.

36704 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36705 characters (for example, single-byte as opposed to multi-byte characters in
36706 arguments and input files).

954 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities unget

36707 LC_MESSAGES
36708 Determine the locale that should be used to affect the format and contents of
36709 diagnostic messages written to standard error.

36710 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36711 ASYNCHRONOUS EVENTS
36712 Default.

36713 STDOUT
36714 The standard output shall consist of a line for each file, in the following format:

36715 "%s\n", <SID removed from file>

36716 If there is more than one named file or if a directory or standard input is named, each pathname
36717 shall be written before each of the preceding lines:

36718 "\n%s:\n", <pathname>

36719 STDERR
36720 The standard error shall be used only for diagnostic messages.

36721 OUTPUT FILES
36722 Any SCCS files updated shall be files of an unspecified format. During processing of a file , a
36723 locking z-file , as described in get, and a q-file (a working copy of the p-file), may be created and
36724 deleted. The p-file and g-file , as described in get, shall be deleted.

36725 EXTENDED DESCRIPTION
36726 None.

36727 EXIT STATUS
36728 The following exit values shall be returned:

36729 0 Successful completion.

36730 >0 An error occurred.

36731 CONSEQUENCES OF ERRORS
36732 Default.

36733 APPLICATION USAGE
36734 None.

36735 EXAMPLES
36736 None.

36737 RATIONALE
36738 None.

36739 FUTURE DIRECTIONS
36740 None.

36741 SEE ALSO
36742 delta , get, sact

36743 CHANGE HISTORY
36744 First released in Issue 2.

36745 Issue 6
36746 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 955

uniq Utilities

36747 NAME
36748 uniq — report or filter out repeated lines in a file

36749 SYNOPSIS
36750 uniq [−c|−d|−u][−f fields][−s char][input_file [output_file]]

36751 DESCRIPTION
36752 The uniq utility shall read an input file comparing adjacent lines, and write one copy of each
36753 input line on the output. The second and succeeding copies of repeated adjacent input lines shall
36754 not be written.

36755 Repeated lines in the input shall not be detected if they are not adjacent.

36756 OPTIONS
36757 The uniq utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
36758 12.2, Utility Syntax Guidelines.

36759 The following options shall be supported:

36760 −c Precede each output line with a count of the number of times the line occurred in
36761 the input.

36762 −d Suppress the writing of lines that are not repeated in the input.

36763 −f fields Ignore the first fields fields on each input line when doing comparisons, where
36764 fields is a positive decimal integer. A field is the maximal string matched by the
36765 basic regular expression:

36766 [[:blank:]]*[ˆ[:blank:]]*

36767 If the fields option-argument specifies more fields than appear on an input line, a
36768 null string shall be used for comparison.

36769 −s chars Ignore the first chars characters when doing comparisons, where chars shall be a
36770 positive decimal integer. If specified in conjunction with the −f option, the first
36771 chars characters after the first fields fields shall be ignored. If the chars option-
36772 argument specifies more characters than remain on an input line, a null string shall
36773 be used for comparison.

36774 −u Suppress the writing of lines that are repeated in the input.

36775 OPERANDS
36776 The following operands shall be supported:

36777 input_file A pathname of the input file. If the input_file operand is not specified, or if the
36778 input_file is ’−’, the standard input shall be used.

36779 output_file A pathname of the output file. If the output_file operand is not specified, the
36780 standard output shall be used. The results are unspecified if the file named by
36781 output_file is the file named by input_file .

36782 STDIN
36783 The standard input shall be used only if no input_file operand is specified or if input_file is ’−’.
36784 See the INPUT FILES section.

36785 INPUT FILES
36786 The input file shall be a text file.

956 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uniq

36787 ENVIRONMENT VARIABLES
36788 The following environment variables shall affect the execution of uniq:

36789 LANG Provide a default value for the internationalization variables that are unset or null.
36790 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
36791 Internationalization Variables for the precedence of internationalization variables
36792 used to determine the values of locale categories.)

36793 LC_ALL If set to a non-empty string value, override the values of all the other
36794 internationalization variables.

36795 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36796 characters (for example, single-byte as opposed to multi-byte characters in
36797 arguments and input files) and which characters constitute a <blank> in the
36798 current locale.

36799 LC_MESSAGES
36800 Determine the locale that should be used to affect the format and contents of
36801 diagnostic messages written to standard error.

36802 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36803 ASYNCHRONOUS EVENTS
36804 Default.

36805 STDOUT
36806 The standard output shall be used only if no output_file operand is specified. See the OUTPUT
36807 FILES section.

36808 STDERR
36809 The standard error shall be used only for diagnostic messages.

36810 OUTPUT FILES
36811 If the −c option is specified, the application shall ensure that the output file is empty or each line
36812 shall be of the form:

36813 "%d %s", <number of duplicates>, <line>

36814 otherwise, the application shall ensure that the output file is empty or each line shall be of the
36815 form:

36816 "%s", <line>

36817 EXTENDED DESCRIPTION
36818 None.

36819 EXIT STATUS
36820 The following exit values shall be returned:

36821 0 The utility executed successfully.

36822 >0 An error occurred.

36823 CONSEQUENCES OF ERRORS
36824 Default.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 957

uniq Utilities

36825 APPLICATION USAGE
36826 The sort utility can be used to cause repeated lines to be adjacent in the input file.

36827 EXAMPLES
36828 The following input file data (but flushed left) was used for a test series on uniq:

36829 #01 foo0 bar0 foo1 bar1
36830 #02 bar0 foo1 bar1 foo1
36831 #03 foo0 bar0 foo1 bar1
36832 #04
36833 #05 foo0 bar0 foo1 bar1
36834 #06 foo0 bar0 foo1 bar1
36835 #07 bar0 foo1 bar1 foo0

36836 What follows is a series of test invocations of the uniq utility that use a mixture of uniq options
36837 against the input file data. These tests verify the meaning of adjacent . The uniq utility views the
36838 input data as a sequence of strings delimited by ’\n’. Accordingly, for the fieldsth member of
36839 the sequence, uniq interprets unique or repeated adjacent lines strictly relative to the fields+1th
36840 member.

36841 1. This first example tests the line counting option, comparing each line of the input file data
36842 starting from the second field:

36843 uniq −c −f 1 uniq_0I.t
36844 1 #01 foo0 bar0 foo1 bar1
36845 1 #02 bar0 foo1 bar1 foo0
36846 1 #03 foo0 bar0 foo1 bar1
36847 1 #04
36848 2 #05 foo0 bar0 foo1 bar1
36849 1 #07 bar0 foo1 bar1 foo0

36850 The number ’2’, prefixing the fifth line of output, signifies that the uniq utility detected a
36851 pair of repeated lines. Given the input data, this can only be true when uniq is run using
36852 the −f 1 option (which shall cause uniq to ignore the first field on each input line).

36853 2. The second example tests the option to suppress unique lines, comparing each line of the
36854 input file data starting from the second field:

36855 uniq −d −f 1 uniq_0I.t
36856 #05 foo0 bar0 foo1 bar1

36857 3. This test suppresses repeated lines, comparing each line of the input file data starting from
36858 the second field:

36859 uniq −u −f 1 uniq_0I.t
36860 #01 foo0 bar0 foo1 bar1
36861 #02 bar0 foo1 bar1 foo1
36862 #03 foo0 bar0 foo1 bar1
36863 #04
36864 #07 bar0 foo1 bar1 foo0

36865 4. This suppresses unique lines, comparing each line of the input file data starting from the
36866 third character:

36867 uniq −d −s 2 uniq_0I.t

36868 In the last example, the uniq utility found no input matching the above criteria.

958 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uniq

36869 RATIONALE
36870 Some historical implementations have limited lines to be 1 080 bytes in length, which does not
36871 meet the implied {LINE_MAX} limit.

36872 FUTURE DIRECTIONS
36873 None.

36874 SEE ALSO
36875 comm, sort

36876 CHANGE HISTORY
36877 First released in Issue 2.

36878 Issue 6
36879 The obsolescent SYNOPSIS and associated text are removed.

36880 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 959

unlink Utilities

36881 NAME
36882 unlink — call the unlink() function

36883 SYNOPSIS
36884 XSI unlink file
36885

36886 DESCRIPTION
36887 The unlink utility shall perform the function call:

36888 unlink(file);

36889 A user may need appropriate privilege to invoke the unlink utility.

36890 OPTIONS
36891 None.

36892 OPERANDS
36893 The following operands shall be supported:

36894 file The pathname of an existing file.

36895 STDIN
36896 Not used.

36897 INPUT FILES
36898 Not used.

36899 ENVIRONMENT VARIABLES
36900 The following environment variables shall affect the execution of unlink:

36901 LANG Provide a default value for the internationalization variables that are unset or null.
36902 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
36903 Internationalization Variables for the precedence of internationalization variables
36904 used to determine the values of locale categories.)

36905 LC_ALL If set to a non-empty string value, override the values of all the other
36906 internationalization variables.

36907 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
36908 characters (for example, single-byte as opposed to multi-byte characters in
36909 arguments).

36910 LC_MESSAGES
36911 Determine the locale that should be used to affect the format and contents of
36912 diagnostic messages written to standard error.

36913 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

36914 ASYNCHRONOUS EVENTS
36915 Default.

36916 STDOUT
36917 None.

36918 STDERR
36919 The standard error shall be used only for diagnostic messages.

960 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities unlink

36920 OUTPUT FILES
36921 None.

36922 EXTENDED DESCRIPTION
36923 None.

36924 EXIT STATUS
36925 The following exit values shall be returned:

36926 0 Successful completion.

36927 >0 An error occurred.

36928 CONSEQUENCES OF ERRORS
36929 Default.

36930 APPLICATION USAGE
36931 None.

36932 EXAMPLES
36933 None.

36934 RATIONALE
36935 None.

36936 FUTURE DIRECTIONS
36937 None.

36938 SEE ALSO
36939 link , rm, the System Interfaces volume of IEEE Std 1003.1-2001, unlink()

36940 CHANGE HISTORY
36941 First released in Issue 5.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 961

uucp Utilities

36942 NAME
36943 uucp — system-to-system copy

36944 SYNOPSIS
36945 XSI uucp [−cCdfjmr][−n user] source-file... destination-file
36946

36947 DESCRIPTION
36948 The uucp utility shall copy files named by the source-file argument to the destination-file
36949 argument. The files named can be on local or remote systems.

36950 The uucp utility cannot guarantee support for all character encodings in all circumstances. For
36951 example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and
36952 filenames need not be portable to non-internationalized systems, and so on. Under these
36953 circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991
36954 standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used,
36955 and that only characters defined in the portable filename character set be used for naming files.
36956 The protocol for transfer of files is unspecified by IEEE Std 1003.1-2001.

36957 Typical implementations of this utility require a communications line configured to use the Base
36958 Definitions volume of IEEE Std 1003.1-2001, Chapter 11, General Terminal Interface, but other
36959 communications means may be used. On systems where there are no available communications
36960 means (either temporarily or permanently), this utility shall write an error message describing
36961 the problem and exit with a non-zero exit status.

36962 OPTIONS
36963 The uucp utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
36964 12.2, Utility Syntax Guidelines.

36965 The following options shall be supported:

36966 −c Do not copy local file to the spool directory for transfer to the remote machine
36967 (default).

36968 −C Force the copy of local files to the spool directory for transfer.

36969 −d Make all necessary directories for the file copy (default).

36970 −f Do not make intermediate directories for the file copy.

36971 −j Write the job identification string to standard output. This job identification can be
36972 used by uustat to obtain the status or terminate a job.

36973 −m Send mail to the requester when the copy is completed.

36974 −n user Notify user on the remote system that a file was sent.

36975 −r Do not start the file transfer; just queue the job.

36976 OPERANDS
36977 The following operands shall be supported:

36978 destination-file, source-file
36979 A pathname of a file to be copied to, or from, respectively. Either name can be a
36980 pathname on the local machine, or can have the form:

36981 system-name!pathname

36982 where system-name is taken from a list of system names that uucp knows about.
36983 The destination system-name can also be a list of names such as:

962 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uucp

36984 system-name!system-name!...!system-name!pathname

36985 in which case, an attempt is made to send the file via the specified route to the
36986 destination. Care should be taken to ensure that intermediate nodes in the route
36987 are willing to forward information.

36988 The shell pattern matching notation characters ’?’, ’*’, and "[...]" appearing
36989 in pathname shall be expanded on the appropriate system.

36990 Pathnames can be one of:

36991 1. An absolute pathname.

36992 2. A pathname preceded by ˜user where user is a login name on the specified
36993 system and is replaced by that user’s login directory. Note that if an invalid
36994 login is specified, the default is to the public directory (called PUBDIR; the
36995 actual location of PUBDIR is implementation-defined).

36996 3. A pathname preceded by ˜/destination where destination is appended to
36997 PUBDIR.

36998 Note: This destination is treated as a filename unless more than one file is being
36999 transferred by this request or the destination is already a directory. To
37000 ensure that it is a directory, follow the destination with a ’/’. For
37001 example, ˜/dan/ as the destination makes the directory PUBDIR/dan if it
37002 does not exist and puts the requested files in that directory.

37003 4. Anything else shall be prefixed by the current directory.

37004 If the result is an erroneous pathname for the remote system, the copy shall fail. If
37005 the destination-file is a directory, the last part of the source-file name shall be used.

37006 The read, write, and execute permissions given by uucp are implementation-
37007 defined.

37008 STDIN
37009 Not used.

37010 INPUT FILES
37011 The files to be copied are regular files.

37012 ENVIRONMENT VARIABLES
37013 The following environment variables shall affect the execution of uucp:

37014 LANG Provide a default value for the internationalization variables that are unset or null.
37015 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
37016 Internationalization Variables for the precedence of internationalization variables
37017 used to determine the values of locale categories.)

37018 LC_ALL If set to a non-empty string value, override the values of all the other
37019 internationalization variables.

37020 LC_COLLATE
37021 Determine the locale for the behavior of ranges, equivalence classes, and multi-
37022 character collating elements within bracketed filename patterns.

37023 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37024 characters (for example, single-byte as opposed to multi-byte characters in
37025 arguments and input files) and the behavior of character classes within bracketed
37026 filename patterns (for example, "’[[:lower:]]*’").

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 963

uucp Utilities

37027 LC_MESSAGES
37028 Determine the locale that should be used to affect the format and contents of
37029 diagnostic messages written to standard error, and informative messages written
37030 to standard output.

37031 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37032 ASYNCHRONOUS EVENTS
37033 Default.

37034 STDOUT
37035 Not used.

37036 STDERR
37037 The standard error shall be used only for diagnostic messages.

37038 OUTPUT FILES
37039 The output files (which may be on other systems) are copies of the input files.

37040 If −m is used, mail files are modified.

37041 EXTENDED DESCRIPTION
37042 None.

37043 EXIT STATUS
37044 The following exit values shall be returned:

37045 0 Successful completion.

37046 >0 An error occurred.

37047 CONSEQUENCES OF ERRORS
37048 Default.

37049 APPLICATION USAGE
37050 The domain of remotely accessible files can (and for obvious security reasons usually should) be
37051 severely restricted.

37052 Note that the ’!’ character in addresses has to be escaped when using csh as a command
37053 interpreter because of its history substitution syntax. For ksh and sh the escape is not necessary,
37054 but may be used.

37055 As noted above, shell metacharacters appearing in pathnames are expanded on the appropriate
37056 system. On an internationalized system, this is done under the control of local settings of
37057 LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed filename
37058 patterns, as collation and typing rules may vary from one system to another. Also be aware that
37059 certain types of expression (that is, equivalence classes, character classes, and collating symbols)
37060 need not be supported on non-internationalized systems.

37061 EXAMPLES
37062 None.

37063 RATIONALE
37064 None.

37065 FUTURE DIRECTIONS
37066 None.

964 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uucp

37067 SEE ALSO
37068 mailx , uuencode, uustat , uux

37069 CHANGE HISTORY
37070 First released in Issue 2.

37071 Issue 6
37072 The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

37073 The UN margin codes and associated shading are removed from the −C, −f, −j, −n, and −r
37074 options in response to The Open Group Base Resolution bwg2001-003.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 965

uudecode Utilities

37075 NAME
37076 uudecode — decode a binary file

37077 SYNOPSIS
37078 UP uudecode [−o outfile][file]
37079

37080 DESCRIPTION
37081 The uudecode utility shall read a file, or standard input if no file is specified, that includes data
37082 created by the uuencode utility. The uudecode utility shall scan the input file, searching for data
37083 compatible with one of the formats specified in uuencode, and attempt to create or overwrite the
37084 file described by the data (or overridden by the −o option). The pathname shall be contained in
37085 the data or specified by the −o option. The file access permission bits and contents for the file to
37086 be produced shall be contained in that data. The mode bits of the created file (other than
37087 standard output) shall be set from the file access permission bits contained in the data; that is,
37088 other attributes of the mode, including the file mode creation mask (see umask), shall not affect
37089 the file being produced.

37090 If the pathname of the file to be produced exists, and the user does not have write permission on
37091 that file, uudecode shall terminate with an error. If the pathname of the file to be produced exists,
37092 and the user has write permission on that file, the existing file shall be overwritten.

37093 If the input data was produced by uuencode on a system with a different number of bits per byte
37094 than on the target system, the results of uudecode are unspecified.

37095 OPTIONS
37096 The uudecode utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001,
37097 Section 12.2, Utility Syntax Guidelines.

37098 The following option shall be supported by the implementation:

37099 −o outfile A pathname of a file that shall be used instead of any pathname contained in the
37100 input data. Specifying an outfile option-argument of /dev/stdout shall indicate
37101 standard output.

37102 OPERANDS
37103 The following operand shall be supported:

37104 file The pathname of a file containing the output of uuencode.

37105 STDIN
37106 See the INPUT FILES section.

37107 INPUT FILES
37108 The input files shall be files containing the output of uuencode.

37109 ENVIRONMENT VARIABLES
37110 The following environment variables shall affect the execution of uudecode:

37111 LANG Provide a default value for the internationalization variables that are unset or null.
37112 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
37113 Internationalization Variables for the precedence of internationalization variables
37114 used to determine the values of locale categories.)

37115 LC_ALL If set to a non-empty string value, override the values of all the other
37116 internationalization variables.

37117 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37118 characters (for example, single-byte as opposed to multi-byte characters in
37119 arguments and input files).

966 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uudecode

37120 LC_MESSAGES
37121 Determine the locale that should be used to affect the format and contents of
37122 diagnostic messages written to standard error.

37123 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37124 ASYNCHRONOUS EVENTS
37125 Default.

37126 STDOUT
37127 If the file data header encoded by uuencode is − or /dev/stdout, or the −o /dev/stdout option
37128 overrides the file data, the standard output shall be in the same format as the file originally
37129 encoded by uuencode. Otherwise, the standard output shall not be used.

37130 STDERR
37131 The standard error shall be used only for diagnostic messages.

37132 OUTPUT FILES
37133 The output file shall be in the same format as the file originally encoded by uuencode.

37134 EXTENDED DESCRIPTION
37135 None.

37136 EXIT STATUS
37137 The following exit values shall be returned:

37138 0 Successful completion.

37139 >0 An error occurred.

37140 CONSEQUENCES OF ERRORS
37141 Default.

37142 APPLICATION USAGE
37143 The user who is invoking uudecode must have write permission on any file being created.

37144 The output of uuencode is essentially an encoded bit stream that is not cognizant of byte
37145 boundaries. It is possible that a 9-bit byte target machine can process input from an 8-bit source,
37146 if it is aware of the requirement, but the reverse is unlikely to be satisfying. Of course, the only
37147 data that is meaningful for such a transfer between architectures is generally character data.

37148 EXAMPLES
37149 None.

37150 RATIONALE
37151 Input files are not necessarily text files, as stated by an early proposal. Although the uuencode
37152 output is a text file, that output could have been wrapped within another file or mail message
37153 that is not a text file.

37154 The −o option is not historical practice, but was added at the request of WG15 so that the user
37155 could override the target pathname without having to edit the input data itself.

37156 In early drafts, the [−o outfile] option-argument allowed the use of − to mean standard output.
37157 The symbol − has only been used previously in IEEE Std 1003.1-2001 as a standard input
37158 indicator. The developers of the standard did not wish to overload the meaning of − in this
37159 manner. The /dev/stdout concept exists on most modern systems. The /dev/stdout syntax does
37160 not refer to a new special file. It is just a magic cookie to specify standard output.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 967

uudecode Utilities

37161 FUTURE DIRECTIONS
37162 None.

37163 SEE ALSO
37164 umask , uuencode

37165 CHANGE HISTORY
37166 First released in Issue 4.

37167 Issue 6
37168 This utility is marked as part of the User Portability Utilities option.

37169 The −o outfile option is added, as specified in the IEEE P1003.2b draft standard.

37170 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

968 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uuencode

37171 NAME
37172 uuencode — encode a binary file

37173 SYNOPSIS
37174 UP uuencode [−m][file] decode_pathname
37175

37176 DESCRIPTION
37177 The uuencode utility shall write an encoded version of the named input file, or standard input if
37178 no file is specified, to standard output. The output shall be encoded using one of the algorithms
37179 described in the STDOUT section and shall include the file access permission bits (in chmod octal
37180 or symbolic notation) of the input file and the decode_pathname, for re-creation of the file on
37181 another system that conforms to this volume of IEEE Std 1003.1-2001.

37182 OPTIONS
37183 The uuencode utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001,
37184 Section 12.2, Utility Syntax Guidelines.

37185 The following option shall be supported by the implementation:

37186 −m Encode the output using the MIME Base64 algorithm described in STDOUT. If −m
37187 is not specified, the historical algorithm described in STDOUT shall be used.

37188 OPERANDS
37189 The following operands shall be supported:

37190 decode_pathname
37191 The pathname of the file into which the uudecode utility shall place the decoded
37192 file. Specifying a decode_pathname operand of /dev/stdout shall indicate that
37193 uudecode is to use standard output. If there are characters in decode_pathname that
37194 are not in the portable filename character set the results are unspecified.

37195 file A pathname of the file to be encoded.

37196 STDIN
37197 See the INPUT FILES section.

37198 INPUT FILES
37199 Input files can be files of any type.

37200 ENVIRONMENT VARIABLES
37201 The following environment variables shall affect the execution of uuencode:

37202 LANG Provide a default value for the internationalization variables that are unset or null.
37203 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
37204 Internationalization Variables for the precedence of internationalization variables
37205 used to determine the values of locale categories.)

37206 LC_ALL If set to a non-empty string value, override the values of all the other
37207 internationalization variables.

37208 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37209 characters (for example, single-byte as opposed to multi-byte characters in
37210 arguments and input files).

37211 LC_MESSAGES
37212 Determine the locale that should be used to affect the format and contents of
37213 diagnostic messages written to standard error.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 969

uuencode Utilities

37214 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37215 ASYNCHRONOUS EVENTS
37216 Default.

37217 STDOUT

37218 uuencode Base64 Algorithm

37219 The standard output shall be a text file (encoded in the character set of the current locale) that
37220 begins with the line:

37221 "begin-base64∆%s∆%s\n", <mode>, <decode_pathname>

37222 and ends with the line:

37223 "====\n"

37224 In both cases, the lines shall have no preceding or trailing <blank>s.

37225 The encoding process represents 24-bit groups of input bits as output strings of four encoded
37226 characters. Proceeding from left to right, a 24-bit input group shall be formed by concatenating
37227 three 8-bit input groups. Each 24-bit input group then shall be treated as four concatenated 6-bit
37228 groups, each of which shall be translated into a single digit in the Base64 alphabet. When
37229 encoding a bit stream via the Base64 encoding, the bit stream shall be presumed to be ordered
37230 with the most-significant bit first. That is, the first bit in the stream shall be the high-order bit in
37231 the first byte, and the eighth bit shall be the low-order bit in the first byte, and so on. Each 6-bit
37232 group is used as an index into an array of 64 printable characters, as shown in Table 4-21.

37233 Table 4-21 uuencode Base64 Values

37234 Value Encoding Value Encoding Value Encoding Value Encoding___
37235 0 A 17 R 34 i 51 z
37236 1 B 18 S 35 j 52 0
37237 2 C 19 T 36 k 53 1
37238 3 D 20 U 37 l 54 2
37239 4 E 21 V 38 m 55 3
37240 5 F 22 W 39 n 56 4
37241 6 G 23 X 40 o 57 5
37242 7 H 24 Y 41 p 58 6
37243 8 I 25 Z 42 q 59 7
37244 9 J 26 a 43 r 60 8
37245 10 K 27 b 44 s 61 9
37246 11 L 28 c 45 t 62 +
37247 12 M 29 d 46 u 63 /
37248 13 N 30 e 47 v
37249 14 O 31 f 48 w (pad) =
37250 15 P 32 g 49 x
37251 16 Q 33 h 50 y___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

37252 The character referenced by the index shall be placed in the output string.

37253 The output stream (encoded bytes) shall be represented in lines of no more than 76 characters
37254 each. All line breaks or other characters not found in the table shall be ignored by decoding
37255 software (see uudecode).

37256 Special processing shall be performed if fewer than 24 bits are available at the end of a message
37257 or encapsulated part of a message. A full encoding quantum shall always be completed at the

970 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uuencode

37258 end of a message. When fewer than 24 input bits are available in an input group, zero bits shall
37259 be added (on the right) to form an integral number of 6-bit groups. Output character positions
37260 that are not required to represent actual input data shall be set to the character ’=’. Since all
37261 Base64 input is an integral number of octets, only the following cases can arise:

37262 1. The final quantum of encoding input is an integral multiple of 24 bits; here, the final unit of
37263 encoded output shall be an integral multiple of 4 characters with no ’=’ padding.

37264 2. The final quantum of encoding input is exactly 16 bits; here, the final unit of encoded
37265 output shall be three characters followed by one ’=’ padding character.

37266 3. The final quantum of encoding input is exactly 8 bits; here, the final unit of encoded output
37267 shall be two characters followed by two ’=’ padding characters.

37268 A terminating "====" evaluates to nothing and denotes the end of the encoded data.

37269 uuencode Historical Algorithm

37270 The standard output shall be a text file (encoded in the character set of the current locale) that
37271 begins with the line:

37272 "begin∆%s∆%s\n" <mode>, <decode_pathname>

37273 and ends with the line:

37274 "end\n"

37275 In both cases, the lines shall have no preceding or trailing <blank>s.

37276 The algorithm that shall be used for lines in between begin and end takes three octets as input
37277 and writes four characters of output by splitting the input at six-bit intervals into four octets,
37278 containing data in the lower six bits only. These octets shall be converted to characters by adding
37279 a value of 0x20 to each octet, so that each octet is in the range [0x20,0x5f], and then it shall be
37280 assumed to represent a printable character in the ISO/IEC 646: 1991 standard encoded character
37281 set. It then shall be translated into the corresponding character codes for the codeset in use in the
37282 current locale. (For example, the octet 0x41, representing ’A’, would be translated to ’A’ in the
37283 current codeset, such as 0xc1 if it were EBCDIC.)

37284 Where the bits of two octets are combined, the least significant bits of the first octet shall be
37285 shifted left and combined with the most significant bits of the second octet shifted right. Thus
37286 the three octets A, B, C shall be converted into the four octets:

37287 0x20 + ((A >> 2) & 0x3F)
37288 0x20 + (((A << 4) | ((B >> 4) & 0xF)) & 0x3F)
37289 0x20 + (((B << 2) | ((C >> 6) & 0x3)) & 0x3F)
37290 0x20 + ((C) & 0x3F)

37291 These octets then shall be translated into the local character set.

37292 Each encoded line contains a length character, equal to the number of characters to be decoded
37293 plus 0x20 translated to the local character set as described above, followed by the encoded
37294 characters. The maximum number of octets to be encoded on each line shall be 45.

37295 STDERR
37296 The standard error shall be used only for diagnostic messages.

37297 OUTPUT FILES
37298 None.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 971

uuencode Utilities

37299 EXTENDED DESCRIPTION
37300 None.

37301 EXIT STATUS
37302 The following exit values shall be returned:

37303 0 Successful completion.

37304 >0 An error occurred.

37305 CONSEQUENCES OF ERRORS
37306 Default.

37307 APPLICATION USAGE
37308 The file is expanded by 35 percent (each three octets become four, plus control information)
37309 causing it to take longer to transmit.

37310 Since this utility is intended to create files to be used for data interchange between systems with
37311 possibly different codesets, and to represent binary data as a text file, the ISO/IEC 646: 1991
37312 standard was chosen for a midpoint in the algorithm as a known reference point. The output
37313 from uuencode is a text file on the local system. If the output were in the ISO/IEC 646: 1991
37314 standard codeset, it might not be a text file (at least because the <newline>s might not match),
37315 and the goal of creating a text file would be defeated. If this text file was then carried to another
37316 machine with the same codeset, it would be perfectly compatible with that system’s uudecode. If
37317 it was transmitted over a mail system or sent to a machine with a different codeset, it is assumed
37318 that, as for every other text file, some translation mechanism would convert it (by the time it
37319 reached a user on the other system) into an appropriate codeset. This translation only makes
37320 sense from the local codeset, not if the file has been put into a ISO/IEC 646: 1991 standard
37321 representation first. Similarly, files processed by uuencode can be placed in pax archives,
37322 intermixed with other text files in the same codeset.

37323 EXAMPLES
37324 None.

37325 RATIONALE
37326 A new algorithm was added at the request of the international community to parallel work in
37327 RFC 2045 (MIME). As with the historical uuencode format, the Base64 Content-Transfer-Encoding
37328 is designed to represent arbitrary sequences of octets in a form that is not humanly readable. A
37329 65-character subset of the ISO/IEC 646: 1991 standard is used, enabling 6 bits to be represented
37330 per printable character. (The extra 65th character, ’=’, is used to signify a special processing
37331 function.)

37332 This subset has the important property that it is represented identically in all versions of the
37333 ISO/IEC 646: 1991 standard, including US ASCII, and all characters in the subset are also
37334 represented identically in all versions of EBCDIC. The historical uuencode algorithm does not
37335 share this property, which is the reason that a second algorithm was added to the ISO POSIX-2
37336 standard.

37337 The string "====" was used for the termination instead of the end used in the original format
37338 because the latter is a string that could be valid encoded input.

37339 In an early draft, the −m option was named −b (for Base64), but it was renamed to reflect its
37340 relationship to the RFC 2045. A −u was also present to invoke the default algorithm, but since
37341 this was not historical practice, it was omitted as being unnecessary.

37342 See the RATIONALE section in uudecode for the derivation of the /dev/stdout symbol.

972 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uuencode

37343 FUTURE DIRECTIONS
37344 None.

37345 SEE ALSO
37346 chmod , mailx , uudecode

37347 CHANGE HISTORY
37348 First released in Issue 4.

37349 Issue 6
37350 This utility is marked as part of the User Portability Utilities option.

37351 The Base64 algorithm and the ability to output to /dev/stdout are added as specified in the
37352 IEEE P1003.2b draft standard.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 973

uustat Utilities

37353 NAME
37354 uustat — uucp status inquiry and job control

37355 SYNOPSIS
37356 XSI uustat [−q| −k jobid| −r jobid]

37357 uustat [−s system][−u user]
37358

37359 DESCRIPTION
37360 The uustat utility shall display the status of, or cancel, previously specified uucp requests, or
37361 provide general status on uucp connections to other systems.

37362 When no options are given, uustat shall write to standard output the status of all uucp requests
37363 issued by the current user.

37364 Typical implementations of this utility require a communications line configured to use the Base
37365 Definitions volume of IEEE Std 1003.1-2001, Chapter 11, General Terminal Interface, but other
37366 communications means may be used. On systems where there are no available communications
37367 means (either temporarily or permanently), this utility shall write an error message describing
37368 the problem and exit with a non-zero exit status.

37369 OPTIONS
37370 The uustat utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
37371 12.2, Utility Syntax Guidelines.

37372 The following options shall be supported:

37373 −q Write the jobs queued for each machine.

37374 −k jobid Kill the uucp request whose job identification is jobid . The application shall ensure
37375 that the killed uucp request belongs to the person invoking uustat unless that user
37376 has appropriate privileges.

37377 −r jobid Rejuvenate jobid . The files associated with jobid are touched so that their
37378 modification time is set to the current time. This prevents the cleanup program
37379 from deleting the job until the jobs modification time reaches the limit imposed by
37380 the program.

37381 −s system Write the status of all uucp requests for remote system system.

37382 −u user Write the status of all uucp requests issued by user.

37383 OPERANDS
37384 None.

37385 STDIN
37386 Not used.

37387 INPUT FILES
37388 None.

37389 ENVIRONMENT VARIABLES
37390 The following environment variables shall affect the execution of uustat:

37391 LANG Provide a default value for the internationalization variables that are unset or null.
37392 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
37393 Internationalization Variables for the precedence of internationalization variables
37394 used to determine the values of locale categories.)

974 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uustat

37395 LC_ALL If set to a non-empty string value, override the values of all the other
37396 internationalization variables.

37397 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37398 characters (for example, single-byte as opposed to multi-byte characters in
37399 arguments).

37400 LC_MESSAGES
37401 Determine the locale that should be used to affect the format and contents of
37402 diagnostic messages written to standard error, and informative messages written
37403 to standard output.

37404 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37405 ASYNCHRONOUS EVENTS
37406 Default.

37407 STDOUT
37408 The standard output shall consist of information about each job selected, in an unspecified
37409 format. The information shall include at least the job ID, the user ID or name, and the remote
37410 system name.

37411 STDERR
37412 The standard error shall be used only for diagnostic messages.

37413 OUTPUT FILES
37414 None.

37415 EXTENDED DESCRIPTION
37416 None.

37417 EXIT STATUS
37418 The following exit values shall be returned:

37419 0 Successful completion.

37420 >0 An error occurred.

37421 CONSEQUENCES OF ERRORS
37422 Default.

37423 APPLICATION USAGE
37424 None.

37425 EXAMPLES
37426 None.

37427 RATIONALE
37428 None.

37429 FUTURE DIRECTIONS
37430 None.

37431 SEE ALSO
37432 uucp

37433 CHANGE HISTORY
37434 First released in Issue 2.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 975

uustat Utilities

37435 Issue 6
37436 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

37437 The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

37438 The UN margin code and associated shading are removed from the −q option in response to The
37439 Open Group Base Resolution bwg2001-003.

976 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uux

37440 NAME
37441 uux — remote command execution

37442 SYNOPSIS
37443 XSI uux [−np] command−string

37444 uux [−jnp] command−string
37445

37446 DESCRIPTION
37447 The uux utility shall gather zero or more files from various systems, execute a shell pipeline (see
37448 Section 2.9 (on page 47)) on a specified system, and then send the standard output of the
37449 command to a file on a specified system. Only the first command of a pipeline can have a
37450 system-name! prefix. All other commands in the pipeline shall be executed on the system of the
37451 first command.

37452 The following restrictions are applicable to the shell pipeline processed by uux:

37453 • In gathering files from different systems, pathname expansion shall not be performed by uux.
37454 Thus, a request such as:

37455 uux "c99 remsys!˜/*.c"

37456 would attempt to copy the file named literally *.c to the local system.

37457 • The redirection operators ">>", "<<", ">|", and ">&" shall not be accepted. Any use of
37458 these redirection operators shall cause this utility to write an error message describing the
37459 problem and exit with a non-zero exit status.

37460 • The reserved word ! cannot be used at the head of the pipeline to modify the exit status. (See
37461 the command-string operand description below.)

37462 • Alias substitution shall not be performed.

37463 A filename can be specified as for uucp; it can be an absolute pathname, a pathname preceded by
37464 ~name (which is replaced by the corresponding login directory), a pathname specified as ˜/dest
37465 (dest is prefixed by the public directory called PUBDIR; the actual location of PUBDIR is
37466 implementation-defined), or a simple filename (which is prefixed by uux with the current
37467 directory). See uucp for the details.

37468 The execution of commands on remote systems shall take place in an execution directory known
37469 to the uucp system. All files required for the execution shall be put into this directory unless they
37470 already reside on that machine. Therefore, the application shall ensure that non-local filenames
37471 (without path or machine reference) are unique within the uux request.

37472 The uux utility shall attempt to get all files to the execution system. For files that are output files,
37473 the application shall ensure that the filename is escaped using parentheses.

37474 The remote system shall notify the user by mail if the requested command on the remote system
37475 was disallowed or the files were not accessible. This notification can be turned off by the −n
37476 option.

37477 Typical implementations of this utility require a communications line configured to use the Base
37478 Definitions volume of IEEE Std 1003.1-2001, Chapter 11, General Terminal Interface, but other
37479 communications means may be used. On systems where there are no available communications
37480 means (either temporarily or permanently), this utility shall write an error message describing
37481 the problem and exit with a non-zero exit status.

37482 The uux utility cannot guarantee support for all character encodings in all circumstances. For
37483 example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 977

uux Utilities

37484 filenames need not be portable to non-internationalized systems, and so on. Under these
37485 circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991
37486 standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used
37487 and that only characters defined in the portable filename character set be used for naming files.

37488 OPTIONS
37489 The uux utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
37490 12.2, Utility Syntax Guidelines.

37491 The following options shall be supported:

37492 −p Make the standard input to uux the standard input to the command-string .

37493 −j Write the job identification string to standard output. This job identification can be
37494 used by uustat to obtain the status or terminate a job.

37495 −n Do not notify the user if the command fails.

37496 OPERANDS
37497 The following operand shall be supported:

37498 command-string
37499 A string made up of one or more arguments that are similar to normal command
37500 arguments, except that the command and any filenames can be prefixed by
37501 system-name!. A null system-name shall be interpreted as the local system.

37502 STDIN
37503 The standard input shall not be used unless the ’−’ or −p option is specified; in those cases, the
37504 standard input shall be made the standard input of the command-string .

37505 INPUT FILES
37506 Input files shall be selected according to the contents of command-string .

37507 ENVIRONMENT VARIABLES
37508 The following environment variables shall affect the execution of uux:

37509 LANG Provide a default value for the internationalization variables that are unset or null.
37510 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
37511 Internationalization Variables for the precedence of internationalization variables
37512 used to determine the values of locale categories.)

37513 LC_ALL If set to a non-empty string value, override the values of all the other
37514 internationalization variables.

37515 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37516 characters (for example, single-byte as opposed to multi-byte characters in
37517 arguments).

37518 LC_MESSAGES
37519 Determine the locale that should be used to affect the format and contents of
37520 diagnostic messages written to standard error.

37521 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37522 ASYNCHRONOUS EVENTS
37523 Default.

978 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities uux

37524 STDOUT
37525 The standard output shall not be used unless the −j option is specified; in that case, the job
37526 identification string shall be written to standard output in the following format:

37527 "%s\n", <jobid>

37528 STDERR
37529 The standard error shall be used only for diagnostic messages.

37530 OUTPUT FILES
37531 Output files shall be created or written, or both, according to the contents of command-string .

37532 If −n is not used, mail files shall be modified following any command or file-access failures on
37533 the remote system.

37534 EXTENDED DESCRIPTION
37535 None.

37536 EXIT STATUS
37537 The following exit values shall be returned:

37538 0 Successful completion.

37539 >0 An error occurred.

37540 CONSEQUENCES OF ERRORS
37541 Default.

37542 APPLICATION USAGE
37543 Note that, for security reasons, many installations limit the list of commands executable on
37544 behalf of an incoming request from uux. Many sites permit little more than the receipt of mail
37545 via uux.

37546 Any characters special to the command interpreter should be quoted either by quoting the entire
37547 command-string or quoting the special characters as individual arguments.

37548 As noted in uucp, shell pattern matching notation characters appearing in pathnames are
37549 expanded on the appropriate local system. This is done under the control of local settings of
37550 LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed filename
37551 patterns, as collation and typing rules may vary from one system to another. Also be aware that
37552 certain types of expression (that is, equivalence classes, character classes, and collating symbols)
37553 need not be supported on non-internationalized systems.

37554 EXAMPLES

37555 1. The following command gets file1 from system a and file2 from system b, executes diff on
37556 the local system, and puts the results in file.diff in the local PUBDIR directory. (PUBDIR is
37557 the uucp public directory on the local system.)

37558 uux "!diff a!/usr/file1 b!/a4/file2 >!˜/file.diff"

37559 2. The following command fails because uux places all files copied to a system in the same
37560 working directory. Although the files xyz are from two different systems, their filenames
37561 are the same and conflict.

37562 uux "!diff a!/usr1/xyz b!/usr2/xyz >!˜/xyz.diff"

37563 3. The following command succeeds (assuming diff is permitted on system a) because the file
37564 local to system a is not copied to the working directory, and hence does not conflict with
37565 the file from system c.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 979

uux Utilities

37566 uux "a!diff a!/usr/xyz c!/usr/xyz >!˜/xyz.diff"

37567 RATIONALE
37568 None.

37569 FUTURE DIRECTIONS
37570 None.

37571 SEE ALSO
37572 Chapter 2 (on page 29), uucp, uuencode, uustat

37573 CHANGE HISTORY
37574 First released in Issue 2.

37575 Issue 6
37576 The obsolescent SYNOPSIS is removed.

37577 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

37578 The UN margin code and associated shading are removed from the −j option in response to The
37579 Open Group Base Resolution bwg2001-003.

980 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities val

37580 NAME
37581 val — validate SCCS files (DEVELOPMENT)

37582 SYNOPSIS
37583 XSI val −

37584 val [−s][−m name][−r SID][−y type] file...
37585

37586 DESCRIPTION
37587 The val utility shall determine whether the specified file is an SCCS file meeting the
37588 characteristics specified by the options.

37589 OPTIONS
37590 The val utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section 12.2,
37591 Utility Syntax Guidelines, except that the usage of the ’−’ operand is not strictly as intended by
37592 the guidelines (that is, reading options and operands from standard input).

37593 The following options shall be supported:

37594 −m name Specify a name, which is compared with the SCCS %M% keyword in file ; see get.

37595 −r SID Specify a SID (SCCS Identification String), an SCCS delta number. A check shall be
37596 made to determine whether the SID is ambiguous (for example, −r 1 is ambiguous
37597 because it physically does not exist but implies 1.1, 1.2, and so on, which may
37598 exist) or invalid (for example, −r 1.0 or −r 1.1.0 are invalid because neither case can
37599 exist as a valid delta number). If the SID is valid and not ambiguous, a check shall
37600 be made to determine whether it actually exists.

37601 −s Silence the diagnostic message normally written to standard output for any error
37602 that is detected while processing each named file on a given command line.

37603 −y type Specify a type , which shall be compared with the SCCS %Y% keyword in file ; see
37604 get.

37605 OPERANDS
37606 The following operands shall be supported:

37607 file A pathname of an existing SCCS file. If exactly one file operand appears, and it is
37608 ’−’, the standard input shall be read: each line shall be independently processed
37609 as if it were a command line argument list. (However, the line is not subjected to
37610 any of the shell word expansions, such as parameter expansion or quote removal.)

37611 STDIN
37612 The standard input shall be a text file used only when the file operand is specified as ’−’.

37613 INPUT FILES
37614 Any SCCS files processed shall be files of an unspecified format.

37615 ENVIRONMENT VARIABLES
37616 The following environment variables shall affect the execution of val:

37617 LANG Provide a default value for the internationalization variables that are unset or null.
37618 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
37619 Internationalization Variables for the precedence of internationalization variables
37620 used to determine the values of locale categories.)

37621 LC_ALL If set to a non-empty string value, override the values of all the other
37622 internationalization variables.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 981

val Utilities

37623 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
37624 characters (for example, single-byte as opposed to multi-byte characters in
37625 arguments and input files).

37626 LC_MESSAGES
37627 Determine the locale that should be used to affect the format and contents of
37628 diagnostic messages written to standard error, and informative messages written
37629 to standard output.

37630 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

37631 ASYNCHRONOUS EVENTS
37632 Default.

37633 STDOUT
37634 The standard output shall consist of informative messages about either:

37635 1. Each file processed

37636 2. Each command line read from standard input

37637 If the standard input is not used, for each file operand yielding a discrepancy, the output line
37638 shall have the following format:

37639 "%s: %s\n", <pathname>, <unspecified string>

37640 If standard input is used, a line of input shall be written before each of the preceding lines for
37641 files containing discrepancies:

37642 "%s:\n", <input line>

37643 STDERR
37644 Not used.

37645 OUTPUT FILES
37646 None.

37647 EXTENDED DESCRIPTION
37648 None.

37649 EXIT STATUS
37650 The 8-bit code returned by val shall be a disjunction of the possible errors; that is, it can be
37651 interpreted as a bit string where set bits are interpreted as follows:

37652 0x80 = Missing file argument.
37653 0x40 = Unknown or duplicate option.
37654 0x20 = Corrupted SCCS file.
37655 0x10 = Cannot open file or file not SCCS.
37656 0x08 = SID is invalid or ambiguous.
37657 0x04 = SID does not exist.
37658 0x02 = %Y%, −y mismatch.
37659 0x01 = %M%, −m mismatch.

37660 Note that val can process two or more files on a given command line and can process multiple
37661 command lines (when reading the standard input). In these cases an aggregate code shall be
37662 returned: a logical OR of the codes generated for each command line and file processed.

982 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities val

37663 CONSEQUENCES OF ERRORS
37664 Default.

37665 APPLICATION USAGE
37666 Since the val exit status sets the 0x80 bit, shell applications checking "$?" cannot tell if it
37667 terminated due to a missing file argument or receipt of a signal.

37668 EXAMPLES
37669 In a directory with three SCCS files—s.x (of t type ‘‘text’’), s.y, and s.z (a corrupted file)—the
37670 following command could produce the output shown:

37671 val − <<EOF
37672 −y source s.x
37673 −m y s.y
37674 s.z
37675 EOF

37676 −y source s.x

37677 s.x: %Y%, −y mismatch
37678 s.z

37679 s.z: corrupted SCCS file

37680 RATIONALE
37681 None.

37682 FUTURE DIRECTIONS
37683 None.

37684 SEE ALSO
37685 admin , delta , get, prs

37686 CHANGE HISTORY
37687 First released in Issue 2.

37688 Issue 6
37689 The Open Group Corrigendum U025/4 is applied, correcting a typographical error in the EXIT
37690 STATUS.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 983

vi Utilities

37691 NAME
37692 vi — screen-oriented (visual) display editor

37693 SYNOPSIS
37694 UP vi [−rR][−c command][−t tagstring][−w size][file ...]
37695

37696 DESCRIPTION
37697 This utility shall be provided on systems that both support the User Portability Utilities option
37698 and define the POSIX2_CHAR_TERM symbol. On other systems it is optional.

37699 The vi (visual) utility is a screen-oriented text editor. Only the open and visual modes of the
37700 editor are described in IEEE Std 1003.1-2001; see the line editor ex for additional editing
37701 capabilities used in vi. The user can switch back and forth between vi and ex and execute ex
37702 commands from within vi.

37703 This reference page uses the term edit buffer to describe the current working text. No specific
37704 implementation is implied by this term. All editing changes are performed on the edit buffer,
37705 and no changes to it shall affect any file until an editor command writes the file.

37706 When using vi, the terminal screen acts as a window into the editing buffer. Changes made to
37707 the editing buffer shall be reflected in the screen display; the position of the cursor on the screen
37708 shall indicate the position within the editing buffer.

37709 Certain terminals do not have all the capabilities necessary to support the complete vi definition.
37710 When these commands cannot be supported on such terminals, this condition shall not produce
37711 an error message such as ‘‘not an editor command’’ or report a syntax error. The implementation
37712 may either accept the commands and produce results on the screen that are the result of an
37713 unsuccessful attempt to meet the requirements of this volume of IEEE Std 1003.1-2001 or report
37714 an error describing the terminal-related deficiency.

37715 OPTIONS
37716 The vi utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section 12.2,
37717 Utility Syntax Guidelines.

37718 The following options shall be supported:

37719 −c command See the ex command description of the −c option.

37720 −r See the ex command description of the −r option.

37721 −R See the ex command description of the −R option.

37722 −t tagstring See the ex command description of the −t option.

37723 −w size See the ex command description of the −w option.

37724 OPERANDS
37725 See the OPERANDS section of the ex command for a description of the operands supported by
37726 the vi command.

37727 STDIN
37728 If standard input is not a terminal device, the results are undefined. The standard input consists
37729 of a series of commands and input text, as described in the EXTENDED DESCRIPTION section.

37730 If a read from the standard input returns an error, or if the editor detects an end-of-file condition
37731 from the standard input, it shall be equivalent to a SIGHUP asynchronous event.

984 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

37732 INPUT FILES
37733 See the INPUT FILES section of the ex command for a description of the input files supported by
37734 the vi command.

37735 ENVIRONMENT VARIABLES
37736 See the ENVIRONMENT VARIABLES section of the ex command for the environment variables
37737 that affect the execution of the vi command.

37738 ASYNCHRONOUS EVENTS
37739 See the ASYNCHRONOUS EVENTS section of the ex for the asynchronous events that affect the
37740 execution of the vi command.

37741 STDOUT
37742 If standard output is not a terminal device, undefined results occur.

37743 Standard output may be used for writing prompts to the user, for informational messages, and
37744 for writing lines from the file.

37745 STDERR
37746 If standard output is not a terminal device, undefined results occur.

37747 The standard error shall be used only for diagnostic messages.

37748 OUTPUT FILES
37749 See the OUTPUT FILES section of the ex command for a description of the output files
37750 supported by the vi command.

37751 EXTENDED DESCRIPTION
37752 If the terminal does not have the capabilities necessary to support an unspecified portion of the
37753 vi definition, implementations shall start initially in ex mode or open mode. Otherwise, after
37754 initialization, vi shall be in command mode; text input mode can be entered by one of several
37755 commands used to insert or change text. In text input mode, <ESC> can be used to return to
37756 command mode; other uses of <ESC> are described later in this section; see Terminate
37757 Command or Input Mode (on page 993).

37758 Initialization in ex and vi

37759 See Initialization in ex and vi (on page 356) for a description of ex and vi initialization for the vi
37760 utility.

37761 Command Descriptions in vi

37762 The following symbols are used in this reference page to represent arguments to commands.

37763 buffer See the description of buffer in the EXTENDED DESCRIPTION section of the ex utility;
37764 see Command Descriptions in ex (on page 366).

37765 In open and visual mode, when a command synopsis shows both [buffer] and [count]
37766 preceding the command name, they can be specified in either order.

37767 count A positive integer used as an optional argument to most commands, either to give a
37768 repeat count or as a size. This argument is optional and shall default to 1 unless
37769 otherwise specified.

37770 The Synopsis lines for the vi commands <control>-G, <control>-L, <control>-R,
37771 <control>-], %, &, ˆ, D, m, M, Q, u, U, and ZZ do not have count as an optional
37772 argument. Regardless, it shall not be an error to specify a count to these commands, and
37773 any specified count shall be ignored.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 985

vi Utilities

37774 motion An optional trailing argument used by the !, <, >, c, d, and y commands, which is used
37775 to indicate the region of text that shall be affected by the command. The motion can be
37776 either one of the command characters repeated or one of several other vi commands
37777 (listed in the following table). Each of the applicable commands specifies the region of
37778 text matched by repeating the command; each command that can be used as a motion
37779 command specifies the region of text it affects.

37780 Commands that take motion arguments operate on either lines or characters, depending
37781 on the circumstances. When operating on lines, all lines that fall partially or wholly
37782 within the text region specified for the command shall be affected. When operating on
37783 characters, only the exact characters in the specified text region shall be affected. Each
37784 motion command specifies this individually.

37785 When commands that may be motion commands are not used as motion commands,
37786 they shall set the current position to the current line and column as specified.

37787 The following commands shall be valid cursor motion commands:

37788 <apostrophe> (- j H
37789 <carriage-return>) $ k L
37790 <comma> [[% l M
37791 <control>-H]] _ n N
37792 <control>-N { ; t T
37793 <control>-P } ? w W
37794 <grave accent> ^ b B
37795 <newline> + e E
37796 <space> | f F
37797 <zero> / h G

37798 Any count that is specified to a command that has an associated motion command shall
37799 be applied to the motion command. If a count is applied to both the command and its
37800 associated motion command, the effect shall be multiplicative.

37801 The following symbols are used in this section to specify locations in the edit buffer:

37802 current character
37803 The character that is currently indicated by the cursor.

37804 end of a line
37805 The point located between the last non-<newline> (if any) and the terminating
37806 <newline> of a line. For an empty line, this location coincides with the beginning of the
37807 line.

37808 end of the edit buffer
37809 The location corresponding to the end of the last line in the edit buffer.

37810 The following symbols are used in this section to specify command actions:

37811 bigword In the POSIX locale, vi shall recognize four kinds of bigwords :

37812 1. A maximal sequence of non-<blank>s preceded and followed by <blank>s or the
37813 beginning or end of a line or the edit buffer

37814 2. One or more sequential blank lines

37815 3. The first character in the edit buffer

37816 4. The last non-<newline> in the edit buffer

986 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

37817 word In the POSIX locale, vi shall recognize five kinds of words:

37818 1. A maximal sequence of letters, digits, and underscores, delimited at both ends by:

37819 — Characters other than letters, digits, or underscores

37820 — The beginning or end of a line

37821 — The beginning or end of the edit buffer

37822 2. A maximal sequence of characters other than letters, digits, underscores, or
37823 <blank>s, delimited at both ends by:

37824 — A letter, digit, underscore

37825 — <blank>s

37826 — The beginning or end of a line

37827 — The beginning or end of the edit buffer

37828 3. One or more sequential blank lines

37829 4. The first character in the edit buffer

37830 5. The last non-<newline> in the edit buffer

37831 section boundary
37832 A section boundary is one of the following:

37833 1. A line whose first character is a <form-feed>

37834 2. A line whose first character is an open curly brace (’{’)

37835 3. A line whose first character is a period and whose second and third characters
37836 match a two-character pair in the sections edit option (see ed)

37837 4. A line whose first character is a period and whose only other character matches
37838 the first character of a two-character pair in the sections edit option, where the
37839 second character of the two-character pair is a <space>

37840 5. The first line of the edit buffer

37841 6. The last line of the edit buffer if the last line of the edit buffer is empty or if it is a
37842]] or } command; otherwise, the last non-<newline> of the last line of the edit
37843 buffer

37844 paragraph boundary
37845 A paragraph boundary is one of the following:

37846 1. A section boundary

37847 2. A line whose first character is a period and whose second and third characters
37848 match a two-character pair in the paragraphs edit option (see ed)

37849 3. A line whose first character is a period and whose only other character matches
37850 the first character of a two-character pair in the paragraphs edit option, where the
37851 second character of the two-character pair is a <space>

37852 4. One or more sequential blank lines

37853 remembered search direction
37854 See the description of remembered search direction in ed.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 987

vi Utilities

37855 sentence boundary
37856 A sentence boundary is one of the following:

37857 1. A paragraph boundary

37858 2. The first non-<blank> that occurs after a paragraph boundary

37859 3. The first non-<blank> that occurs after a period (’.’), exclamation mark (’!’),
37860 or question mark (’?’), followed by two <space>s or the end of a line; any
37861 number of closing parenthesis (’)’), closing brackets (’]’), double quote (’"’),
37862 or single quote (’’’) characters can appear between the punctuation mark and
37863 the two <space>s or end-of-line

37864 In the remainder of the description of the vi utility, the term ‘‘buffer line’’ refers to a line in the
37865 edit buffer and the term ‘‘display line’’ refers to the line or lines on the display screen used to
37866 display one buffer line. The term ‘‘current line’’ refers to a specific ‘‘buffer line’’.

37867 If there are display lines on the screen for which there are no corresponding buffer lines because
37868 they correspond to lines that would be after the end of the file, they shall be displayed as a single
37869 tilde (’˜’) character, plus the terminating <newline>.

37870 The last line of the screen shall be used to report errors or display informational messages. It
37871 shall also be used to display the input for ‘‘line-oriented commands’’ (/, ?, :, and !). When a line-
37872 oriented command is executed, the editor shall enter text input mode on the last line on the
37873 screen, using the respective command characters as prompt characters. (In the case of the !
37874 command, the associated motion shall be entered by the user before the editor enters text input
37875 mode.) The line entered by the user shall be terminated by a <newline>, a non-<control>-V-
37876 escaped <carriage-return>, or unescaped <ESC>. It is unspecified if more characters than
37877 require a display width minus one column number of screen columns can be entered.

37878 If any command is executed that overwrites a portion of the screen other than the last line of the
37879 screen (for example, the ex suspend or ! commands), other than the ex shell command, the user
37880 shall be prompted for a character before the screen is refreshed and the edit session continued.

37881 <tab>s shall take up the number of columns on the screen set by the tabstop edit option (see ed),
37882 unless there are less than that number of columns before the display margin that will cause the
37883 displayed line to be folded; in this case, they shall only take up the number of columns up to that
37884 boundary.

37885 The cursor shall be placed on the current line and relative to the current column as specified by
37886 each command described in the following sections.

37887 In open mode, if the current line is not already displayed, then it shall be displayed.

37888 In visual mode, if the current line is not displayed, then the lines that are displayed shall be
37889 expanded, scrolled, or redrawn to cause an unspecified portion of the current line to be
37890 displayed. If the screen is redrawn, no more than the number of display lines specified by the
37891 value of the window edit option shall be displayed (unless the current line cannot be completely
37892 displayed in the number of display lines specified by the window edit option) and the current
37893 line shall be positioned as close to the center of the displayed lines as possible (within the
37894 constraints imposed by the distance of the line from the beginning or end of the edit buffer). If
37895 the current line is before the first line in the display and the screen is scrolled, an unspecified
37896 portion of the current line shall be placed on the first line of the display. If the current line is after
37897 the last line in the display and the screen is scrolled, an unspecified portion of the current line
37898 shall be placed on the last line of the display.

37899 In visual mode, if a line from the edit buffer (other than the current line) does not entirely fit into
37900 the lines at the bottom of the display that are available for its presentation, the editor may

988 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

37901 choose not to display any portion of the line. The lines of the display that do not contain text
37902 from the edit buffer for this reason shall each consist of a single ’@’ character.

37903 In visual mode, the editor may choose for unspecified reasons to not update lines in the display
37904 to correspond to the underlying edit buffer text. The lines of the display that do not correctly
37905 correspond to text from the edit buffer for this reason shall consist of a single ’@’ character
37906 (plus the terminating <newline>), and the <control>-R command shall cause the editor to
37907 update the screen to correctly represent the edit buffer.

37908 Open and visual mode commands that set the current column set it to a column position in the
37909 display, and not a character position in the line. In this case, however, the column position in the
37910 display shall be calculated for an infinite width display; for example, the column related to a
37911 character that is part of a line that has been folded onto additional screen lines will be offset from
37912 the display line column where the buffer line begins, not from the beginning of a particular
37913 display line.

37914 The display cursor column in the display is based on the value of the current column, as follows,
37915 with each rule applied in turn:

37916 1. If the current column is after the last display line column used by the displayed line, the
37917 display cursor column shall be set to the last display line column occupied by the last non-
37918 <newline> in the current line; otherwise, the display cursor column shall be set to the
37919 current column.

37920 2. If the character of which some portion is displayed in the display line column specified by
37921 the display cursor column requires more than a single display line column:

37922 a. If in text input mode, the display cursor column shall be adjusted to the first display
37923 line column in which any portion of that character is displayed.

37924 b. Otherwise, the display cursor column shall be adjusted to the last display line
37925 column in which any portion of that character is displayed.

37926 The current column shall not be changed by these adjustments to the display cursor column.

37927 If an error occurs during the parsing or execution of a vi command:

37928 • The terminal shall be alerted. Execution of the vi command shall stop, and the cursor (for
37929 example, the current line and column) shall not be further modified.

37930 • Unless otherwise specified by the following command sections, it is unspecified whether an
37931 informational message shall be displayed.

37932 • Any partially entered vi command shall be discarded.

37933 • If the vi command resulted from a map expansion, all characters from that map expansion
37934 shall be discarded, except as otherwise specified by the map command (see ed).

37935 • If the vi command resulted from the execution of a buffer, no further commands caused by
37936 the execution of the buffer shall be executed.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 989

vi Utilities

37937 Page Backwards

37938 Synopsis: [count] <control>-B

37939 If in open mode, the <control>-B command shall behave identically to the z command.
37940 Otherwise, if the current line is the first line of the edit buffer, it shall be an error.

37941 If the window edit option is less than 3, display a screen where the last line of the display shall
37942 be some portion of:

37943 (current first line) −1

37944 otherwise, display a screen where the first line of the display shall be some portion of:

37945 (current first line) − count x ((window edit option) −2)

37946 If this calculation would result in a line that is before the first line of the edit buffer, the first line
37947 of the display shall display some portion of the first line of the edit buffer.

37948 Current line : If no lines from the previous display remain on the screen, set to the last line of the
37949 display; otherwise, set to (line − the number of new lines displayed on this screen).

37950 Current column : Set to non-<blank>.

37951 Scroll Forward

37952 Synopsis: [count] <control>-D

37953 If the current line is the last line of the edit buffer, it shall be an error.

37954 If no count is specified, count shall default to the count associated with the previous <control>-D
37955 or <control>-U command. If there was no previous <control>-D or <control>-U command, count
37956 shall default to the value of the scroll edit option.

37957 If in open mode, write lines starting with the line after the current line, until count lines or the
37958 last line of the file have been written.

37959 Current line : If the current line + count is past the last line of the edit buffer, set to the last line of
37960 the edit buffer; otherwise, set to the current line + count .

37961 Current column : Set to non-<blank>.

37962 Scroll Forward by Line

37963 Synopsis: [count] <control>-E

37964 Display the line count lines after the last line currently displayed.

37965 If the last line of the edit buffer is displayed, it shall be an error. If there is no line count lines
37966 after the last line currently displayed, the last line of the display shall display some portion of
37967 the last line of the edit buffer.

37968 Current line : Unchanged if the previous current character is displayed; otherwise, set to the first
37969 line displayed.

37970 Current column : Unchanged.

990 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

37971 Page Forward

37972 Synopsis: [count] <control>-F

37973 If in open mode, the <control>-F command shall behave identically to the z command.
37974 Otherwise, if the current line is the last line of the edit buffer, it shall be an error.

37975 If the window edit option is less than 3, display a screen where the first line of the display shall
37976 be some portion of:

37977 (current last line) +1

37978 otherwise, display a screen where the first line of the display shall be some portion of:

37979 (current first line) + count x ((window edit option) −2)

37980 If this calculation would result in a line that is after the last line of the edit buffer, the last line of
37981 the display shall display some portion of the last line of the edit buffer.

37982 Current line : If no lines from the previous display remain on the screen, set to the first line of the
37983 display; otherwise, set to (line + the number of new lines displayed on this screen).

37984 Current column : Set to non-<blank>.

37985 Display Information

37986 Synopsis: <control>-G

37987 This command shall be equivalent to the ex file command.

37988 Move Cursor Backwards

37989 Synopsis: [count] <control>-H
37990 [count] h
37991 the current erase character (see stty)

37992 If there are no characters before the current character on the current line, it shall be an error. If
37993 there are less than count previous characters on the current line, count shall be adjusted to the
37994 number of previous characters on the line.

37995 If used as a motion command:

37996 1. The text region shall be from the character before the starting cursor up to and including
37997 the countth character before the starting cursor.

37998 2. Any text copied to a buffer shall be in character mode.

37999 If not used as a motion command:

38000 Current line : Unchanged.

38001 Current column : Set to (column − the number of columns occupied by count characters ending
38002 with the previous current column).

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 991

vi Utilities

38003 Move Down

38004 Synopsis: [count] <newline>
38005 [count] <control>-J
38006 [count] <control>-M
38007 [count] <control>-N
38008 [count] j
38009 [count] <carriage-return>
38010 [count] +

38011 If there are less than count lines after the current line in the edit buffer, it shall be an error.

38012 If used as a motion command:

38013 1. The text region shall include the starting line and the next count − 1 lines.

38014 2. Any text copied to a buffer shall be in line mode.

38015 If not used as a motion command:

38016 Current line : Set to current line+ count .

38017 Current column : Set to non-<blank> for the <carriage-return>, <control>-M, and + commands;
38018 otherwise, unchanged.

38019 Clear and Redisplay

38020 Synopsis: <control>-L

38021 If in open mode, clear the screen and redisplay the current line. Otherwise, clear and redisplay
38022 the screen.

38023 Current line : Unchanged.

38024 Current column : Unchanged.

38025 Move Up

38026 Synopsis: [count] <control>-P
38027 [count] k
38028 [count] −

38029 If there are less than count lines before the current line in the edit buffer, it shall be an error.

38030 If used as a motion command:

38031 1. The text region shall include the starting line and the previous count lines.

38032 2. Any text copied to a buffer shall be in line mode.

38033 If not used as a motion command:

38034 Current line : Set to current line − count .

38035 Current column : Set to non-<blank> for the − command; otherwise, unchanged.

992 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38036 Redraw Screen

38037 Synopsis: <control>-R

38038 If any lines have been deleted from the display screen and flagged as deleted on the terminal
38039 using the @ convention (see the beginning of the EXTENDED DESCRIPTION section), they shall
38040 be redisplayed to match the contents of the edit buffer.

38041 It is unspecified whether lines flagged with @ because they do not fit on the terminal display
38042 shall be affected.

38043 Current line : Unchanged.

38044 Current column : Unchanged.

38045 Scroll Backward

38046 Synopsis: [count] <control>-U

38047 If the current line is the first line of the edit buffer, it shall be an error.

38048 If no count is specified, count shall default to the count associated with the previous <control>-D
38049 or <control>-U command. If there was no previous <control>-D or <control>-U command, count
38050 shall default to the value of the scroll edit option.

38051 Current line : If count is greater than the current line, set to 1; otherwise, set to the current line −
38052 count .

38053 Current column : Set to non-<blank>.

38054 Scroll Backward by Line

38055 Synopsis: [count] <control>-Y

38056 Display the line count lines before the first line currently displayed.

38057 If the current line is the first line of the edit buffer, it shall be an error. If this calculation would
38058 result in a line that is before the first line of the edit buffer, the first line of the display shall
38059 display some portion of the first line of the edit buffer.

38060 Current line : Unchanged if the previous current character is displayed; otherwise, set to the first
38061 line displayed.

38062 Current column : Unchanged.

38063 Edit the Alternate File

38064 Synopsis: <control>-ˆ

38065 This command shall be equivalent to the ex edit command, with the alternate pathname as its
38066 argument.

38067 Terminate Command or Input Mode

38068 Synopsis: <ESC>

38069 If a partial vi command (as defined by at least one, non-count character) has been entered,
38070 discard the count and the command character(s).

38071 Otherwise, if no command characters have been entered, and the <ESC> was the result of a map
38072 expansion, the terminal shall be alerted and the <ESC> character shall be discarded, but it shall
38073 not be an error.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 993

vi Utilities

38074 Otherwise, it shall be an error.

38075 Current line : Unchanged.

38076 Current column : Unchanged.

38077 Search for tagstring

38078 Synopsis: <control>-]

38079 If the current character is not a word or <blank>, it shall be an error.

38080 This command shall be equivalent to the ex tag command, with the argument to that command
38081 defined as follows.

38082 If the current character is a <blank>:

38083 1. Skip all <blank>s after the cursor up to the end of the line.

38084 2. If the end of the line is reached, it shall be an error.

38085 Then, the argument to the ex tag command shall be the current character and all subsequent
38086 characters, up to the first non-word character or the end of the line.

38087 Move Cursor Forward

38088 Synopsis: [count] <space>
38089 [count] l (ell)

38090 If there are less than count non-<newline>s after the cursor on the current line, count shall be
38091 adjusted to the number of non-<newline>s after the cursor on the line.

38092 If used as a motion command:

38093 1. If the current or countth character after the cursor is the last non-<newline> in the line, the
38094 text region shall be comprised of the current character up to and including the last non-
38095 <newline> in the line. Otherwise, the text region shall be from the current character up to,
38096 but not including, the countth character after the cursor.

38097 2. Any text copied to a buffer shall be in character mode.

38098 If not used as a motion command:

38099 If there are no non-<newline>s after the current character on the current line, it shall be an error.

38100 Current line : Unchanged.

38101 Current column : Set to the last column that displays any portion of the countth character after the
38102 current character.

38103 Replace Text with Results from Shell Command

38104 Synopsis: [count] ! motion shell-commands <newline>

38105 If the motion command is the ! command repeated:

38106 1. If the edit buffer is empty and no count was supplied, the command shall be the equivalent
38107 of the ex :read ! command, with the text input, and no text shall be copied to any buffer.

38108 2. Otherwise:

38109 a. If there are less than count −1 lines after the current line in the edit buffer, it shall be
38110 an error.

994 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38111 b. The text region shall be from the current line up to and including the next count −1
38112 lines.

38113 Otherwise, the text region shall be the lines in which any character of the text region specified by
38114 the motion command appear.

38115 Any text copied to a buffer shall be in line mode.

38116 This command shall be equivalent to the ex ! command for the specified lines.

38117 Move Cursor to End-of-Line

38118 Synopsis: [count] $

38119 It shall be an error if there are less than (count −1) lines after the current line in the edit buffer.

38120 If used as a motion command:

38121 1. If count is 1:

38122 a. It shall be an error if the line is empty.

38123 b. Otherwise, the text region shall consist of all characters from the starting cursor to
38124 the last non-<newline> in the line, inclusive, and any text copied to a buffer shall be
38125 in character mode.

38126 2. Otherwise, if the starting cursor position is at or before the first non-<blank> in the line,
38127 the text region shall consist of the current and the next count −1 lines, and any text saved to
38128 a buffer shall be in line mode.

38129 3. Otherwise, the text region shall consist of all characters from the starting cursor to the last
38130 non-<newline> in the line that is count −1 lines forward from the current line, and any text
38131 copied to a buffer shall be in character mode.

38132 If not used as a motion command:

38133 Current line : Set to the current line + count−1.

38134 Current column : The current column is set to the last display line column of the last non-
38135 <newline> in the line, or column position 1 if the line is empty.

38136 The current column shall be adjusted to be on the last display line column of the last non-
38137 <newline> of the current line as subsequent commands change the current line, until a
38138 command changes the current column.

38139 Move to Matching Character

38140 Synopsis: %

38141 If the character at the current position is not a parenthesis, bracket, or curly brace, search
38142 forward in the line to the first one of those characters. If no such character is found, it shall be an
38143 error.

38144 The matching character shall be the parenthesis, bracket, or curly brace matching the
38145 parenthesis, bracket, or curly brace, respectively, that was at the current position or that was
38146 found on the current line.

38147 Matching shall be determined as follows, for an open parenthesis:

38148 1. Set a counter to 1.

38149 2. Search forwards until a parenthesis is found or the end of the edit buffer is reached.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 995

vi Utilities

38150 3. If the end of the edit buffer is reached, it shall be an error.

38151 4. If an open parenthesis is found, increment the counter by 1.

38152 5. If a close parenthesis is found, decrement the counter by 1.

38153 6. If the counter is zero, the current character is the matching character.

38154 Matching for a close parenthesis shall be equivalent, except that the search shall be backwards,
38155 from the starting character to the beginning of the buffer, a close parenthesis shall increment the
38156 counter by 1, and an open parenthesis shall decrement the counter by 1.

38157 Matching for brackets and curly braces shall be equivalent, except that searching shall be done
38158 for open and close brackets or open and close curly braces. It is implementation-defined whether
38159 other characters are searched for and matched as well.

38160 If used as a motion command:

38161 1. If the matching cursor was after the starting cursor in the edit buffer, and the starting
38162 cursor position was at or before the first non-<blank> non-<newline> in the starting line,
38163 and the matching cursor position was at or after the last non-<blank> non-<newline> in
38164 the matching line, the text region shall consist of the current line to the matching line,
38165 inclusive, and any text copied to a buffer shall be in line mode.

38166 2. If the matching cursor was before the starting cursor in the edit buffer, and the starting
38167 cursor position was at or after the last non-<blank> non-<newline> in the starting line, and
38168 the matching cursor position was at or before the first non-<blank> non-<newline> in the
38169 matching line, the text region shall consist of the current line to the matching line,
38170 inclusive, and any text copied to a buffer shall be in line mode.

38171 3. Otherwise, the text region shall consist of the starting character to the matching character,
38172 inclusive, and any text copied to a buffer shall be in character mode.

38173 If not used as a motion command:

38174 Current line : Set to the line where the matching character is located.

38175 Current column : Set to the last column where any portion of the matching character is displayed.

38176 Repeat Substitution

38177 Synopsis: &

38178 Repeat the previous substitution command. This command shall be equivalent to the ex &
38179 command with the current line as its addresses, and without options , count , or flags .

38180 Return to Previous Context at Beginning of Line

38181 Synopsis: ’ character

38182 It shall be an error if there is no line in the edit buffer marked by character .

38183 If used as a motion command:

38184 1. If the starting cursor is after the marked cursor, then the locations of the starting cursor
38185 and the marked cursor in the edit buffer shall be logically swapped.

38186 2. The text region shall consist of the starting line up to and including the marked line, and
38187 any text copied to a buffer shall be in line mode.

38188 If not used as a motion command:

996 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38189 Current line : Set to the line referenced by the mark.

38190 Current column : Set to non-<blank>.

38191 Return to Previous Context

38192 Synopsis: ‘ character

38193 It shall be an error if the marked line is no longer in the edit buffer. If the marked line no longer
38194 contains a character in the saved numbered character position, it shall be as if the marked
38195 position is the first non-<blank>.

38196 If used as a motion command:

38197 1. It shall be an error if the marked cursor references the same character in the edit buffer as
38198 the starting cursor.

38199 2. If the starting cursor is after the marked cursor, then the locations of the starting cursor
38200 and the marked cursor in the edit buffer shall be logically swapped.

38201 3. If the starting line is empty or the starting cursor is at or before the first non-<blank> non-
38202 <newline> of the starting line, and the marked cursor line is empty or the marked cursor
38203 references the first character of the marked cursor line, the text region shall consist of all
38204 lines containing characters from the starting cursor to the line before the marked cursor
38205 line, inclusive, and any text copied to a buffer shall be in line mode.

38206 4. Otherwise, if the marked cursor line is empty or the marked cursor references a character
38207 at or before the first non-<blank> non-<newline> of the marked cursor line, the region of
38208 text shall be from the starting cursor to the last non-<newline> of the line before the
38209 marked cursor line, inclusive, and any text copied to a buffer shall be in character mode.

38210 5. Otherwise, the region of text shall be from the starting cursor (inclusive), to the marked
38211 cursor (exclusive), and any text copied to a buffer shall be in character mode.

38212 If not used as a motion command:

38213 Current line : Set to the line referenced by the mark.

38214 Current column : Set to the last column in which any portion of the character referenced by the
38215 mark is displayed.

38216 Return to Previous Section

38217 Synopsis: [[

38218 Move the cursor backward through the edit buffer to the first character of the previous section
38219 boundary, count times.

38220 If used as a motion command:

38221 1. If the starting cursor was at the first character of the starting line or the starting line was
38222 empty, and the first character of the boundary was the first character of the boundary line,
38223 the text region shall consist of the current line up to and including the line where the
38224 countth next boundary starts, and any text copied to a buffer shall be in line mode.

38225 2. If the boundary was the last line of the edit buffer or the last non-<newline> of the last line
38226 of the edit buffer, the text region shall consist of the last character in the edit buffer up to
38227 and including the starting character, and any text saved to a buffer shall be in character
38228 mode.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 997

vi Utilities

38229 3. Otherwise, the text region shall consist of the starting character up to but not including the
38230 first character in the countth next boundary, and any text copied to a buffer shall be in
38231 character mode.

38232 If not used as a motion command:

38233 Current line : Set to the line where the countth next boundary in the edit buffer starts.

38234 Current column : Set to the last column in which any portion of the first character of the countth
38235 next boundary is displayed, or column position 1 if the line is empty.

38236 Move to Next Section

38237 Synopsis:]]

38238 Move the cursor forward through the edit buffer to the first character of the next section
38239 boundary, count times.

38240 If used as a motion command:

38241 1. If the starting cursor was at the first character of the starting line or the starting line was
38242 empty, and the first character of the boundary was the first character of the boundary line,
38243 the text region shall consist of the current line up to and including the line where the
38244 countth previous boundary starts, and any text copied to a buffer shall be in line mode.

38245 2. If the boundary was the first line of the edit buffer, the text region shall consist of the first
38246 character in the edit buffer up to but not including the starting character, and any text
38247 copied to a buffer shall be in character mode.

38248 3. Otherwise, the text region shall consist of the first character in the countth previous section
38249 boundary up to but not including the starting character, and any text copied to a buffer
38250 shall be in character mode.

38251 If not used as a motion command:

38252 Current line : Set to the line where the countth previous boundary in the edit buffer starts.

38253 Current column : Set to the last column in which any portion of the first character of the countth
38254 previous boundary is displayed, or column position 1 if the line is empty.

38255 Move to First Non-<blank> Position on Current Line

38256 Synopsis: ^

38257 If used as a motion command:

38258 1. If the line has no non-<blank> non-<newline>s, or if the cursor is at the first non-<blank>
38259 non-<newline> of the line, it shall be an error.

38260 2. If the cursor is before the first non-<blank> non-<newline> of the line, the text region shall
38261 be comprised of the current character, up to, but not including, the first non-<blank> non-
38262 <newline> of the line.

38263 3. If the cursor is after the first non-<blank> non-<newline> of the line, the text region shall
38264 be from the character before the starting cursor up to and including the first non-<blank>
38265 non-<newline> of the line.

38266 4. Any text copied to a buffer shall be in character mode.

38267 If not used as a motion command:

998 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38268 Current line : Unchanged.

38269 Current column : Set to non-<blank>.

38270 Current and Line Above

38271 Synopsis: [count] _

38272 If there are less than count −1 lines after the current line in the edit buffer, it shall be an error.

38273 If used as a motion command:

38274 1. If count is less than 2, the text region shall be the current line.

38275 2. Otherwise, the text region shall include the starting line and the next count −1 lines.

38276 3. Any text copied to a buffer shall be in line mode.

38277 If not used as a motion command:

38278 Current line : Set to current line + count −1.

38279 Current column : Set to non-<blank>.

38280 Move Back to Beginning of Sentence

38281 Synopsis: [count] (

38282 Move backward to the beginning of a sentence. This command shall be equivalent to the [[
38283 command, with the exception that sentence boundaries shall be used instead of section
38284 boundaries.

38285 Move Forward to Beginning of Sentence

38286 Synopsis: [count])

38287 Move forward to the beginning of a sentence. This command shall be equivalent to the]]
38288 command, with the exception that sentence boundaries shall be used instead of section
38289 boundaries.

38290 Move Back to Preceding Paragraph

38291 Synopsis: [count] {

38292 Move back to the beginning of the preceding paragraph. This command shall be equivalent to
38293 the [[command, with the exception that paragraph boundaries shall be used instead of section
38294 boundaries.

38295 Move Forward to Next Paragraph

38296 Synopsis: [count] }

38297 Move forward to the beginning of the next paragraph. This command shall be equivalent to the
38298]] command, with the exception that paragraph boundaries shall be used instead of section
38299 boundaries.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 999

vi Utilities

38300 Move to Specific Column Position

38301 Synopsis: [count] |

38302 For the purposes of this command, lines that are too long for the current display and that have
38303 been folded shall be treated as having a single, 1−based, number of columns.

38304 If there are less than count columns in which characters from the current line are displayed on
38305 the screen, count shall be adjusted to be the last column in which any portion of the line is
38306 displayed on the screen.

38307 If used as a motion command:

38308 1. If the line is empty, or the cursor character is the same as the character on the countth
38309 column of the line, it shall be an error.

38310 2. If the cursor is before the countth column of the line, the text region shall be comprised of
38311 the current character, up to but not including the character on the countth column of the
38312 line.

38313 3. If the cursor is after the countth column of the line, the text region shall be from the
38314 character before the starting cursor up to and including the character on the countth
38315 column of the line.

38316 4. Any text copied to a buffer shall be in character mode.

38317 If not used as a motion command:

38318 Current line : Unchanged.

38319 Current column : Set to the last column in which any portion of the character that is displayed in
38320 the count column of the line is displayed.

38321 Reverse Find Character

38322 Synopsis: [count] ,

38323 If the last F, f, T, or t command was F, f, T, or t, this command shall be equivalent to an f, F, t, or
38324 T command, respectively, with the specified count and the same search character.

38325 If there was no previous F, f, T, or t command, it shall be an error.

38326 Repeat

38327 Synopsis: [count] .

38328 Repeat the last !, <, >, A, C, D, I, J, O, P, R, S, X, Y, a, c, d, i, o, p, r, s, x, y, or ˜ command. It shall
38329 be an error if none of these commands have been executed. Commands (other than commands
38330 that enter text input mode) executed as a result of map expansions, shall not change the value of
38331 the last repeatable command.

38332 Repeated commands with associated motion commands shall repeat the motion command as
38333 well; however, any specified count shall replace the count(s) that were originally specified to the
38334 repeated command or its associated motion command.

38335 If the motion component of the repeated command is f, F, t, or T, the repeated command shall
38336 not set the remembered search character for the ; and , commands.

38337 If the repeated command is p or P, and the buffer associated with that command was a numeric
38338 buffer named with a number less than 9, the buffer associated with the repeated command shall
38339 be set to be the buffer named by the name of the previous buffer logically incremented by 1.

1000 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38340 If the repeated character is a text input command, the input text associated with that command
38341 is repeated literally:

38342 • Input characters are neither macro or abbreviation-expanded.

38343 • Input characters are not interpreted in any special way with the exception that <newline>,
38344 <carriage-return>, and <control>-T behave as described in Input Mode Commands in vi (on
38345 page 1019).

38346 Current line : Set as described for the repeated command.

38347 Current column : Set as described for the repeated command.

38348 Find Regular Expression

38349 Synopsis: /

38350 If the input line contains no non-<newline>s, it shall be equivalent to a line containing only the
38351 last regular expression encountered. The enhanced regular expressions supported by vi are
38352 described in Regular Expressions in ex (on page 389).

38353 Otherwise, the line shall be interpreted as one or more regular expressions, optionally followed
38354 by an address offset or a vi z command.

38355 If the regular expression is not the last regular expression on the line, or if a line offset or z
38356 command is specified, the regular expression shall be terminated by an unescaped ’/’
38357 character, which shall not be used as part of the regular expression. If the regular expression is
38358 not the first regular expression on the line, it shall be preceded by zero or more <blank>s, a
38359 semicolon, zero or more <blank>s, and a leading ’/’ character, which shall not be interpreted as
38360 part of the regular expression. It shall be an error to precede any regular expression with any
38361 characters other than these.

38362 Each search shall begin from the character after the first character of the last match (or, if it is the
38363 first search, after the cursor). If the wrapscan edit option is set, the search shall continue to the
38364 character before the starting cursor character; otherwise, to the end of the edit buffer. It shall be
38365 an error if any search fails to find a match, and an informational message to this effect shall be
38366 displayed.

38367 An optional address offset (see Addressing in ex (on page 359)) can be specified after the last
38368 regular expression by including a trailing ’/’ character after the regular expression and
38369 specifying the address offset. This offset will be from the line containing the match for the last
38370 regular expression specified. It shall be an error if the line offset would indicate a line address
38371 less than 1 or greater than the last line in the edit buffer. An address offset of zero shall be
38372 supported. It shall be an error to follow the address offset with any other characters than
38373 <blank>s.

38374 If not used as a motion command, an optional z command (see Redraw Window (on page 1018))
38375 can be specified after the last regular expression by including a trailing ’/’ character after the
38376 regular expression, zero or more <blank>s, a ’z’, zero or more <blank>s, an optional new
38377 window edit option value, zero or more <blank>s, and a location character. The effect shall be as
38378 if the z command was executed after the / command. It shall be an error to follow the z
38379 command with any other characters than <blank>s.

38380 The remembered search direction shall be set to forward.

38381 If used as a motion command:

38382 1. It shall be an error if the last match references the same character in the edit buffer as the
38383 starting cursor.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1001

vi Utilities

38384 2. If any address offset is specified, the last match shall be adjusted by the specified offset as
38385 described previously.

38386 3. If the starting cursor is after the last match, then the locations of the starting cursor and the
38387 last match in the edit buffer shall be logically swapped.

38388 4. If any address offset is specified, the text region shall consist of all lines containing
38389 characters from the starting cursor to the last match line, inclusive, and any text copied to a
38390 buffer shall be in line mode.

38391 5. Otherwise, if the starting line is empty or the starting cursor is at or before the first non-
38392 <blank> non-<newline> of the starting line, and the last match line is empty or the last
38393 match starts at the first character of the last match line, the text region shall consist of all
38394 lines containing characters from the starting cursor to the line before the last match line,
38395 inclusive, and any text copied to a buffer shall be in line mode.

38396 6. Otherwise, if the last match line is empty or the last match begins at a character at or
38397 before the first non-<blank> non-<newline> of the last match line, the region of text shall
38398 be from the current cursor to the last non-<newline> of the line before the last match line,
38399 inclusive, and any text copied to a buffer shall be in character mode.

38400 7. Otherwise, the region of text shall be from the current cursor (inclusive), to the first
38401 character of the last match (exclusive), and any text copied to a buffer shall be in character
38402 mode.

38403 If not used as a motion command:

38404 Current line : If a match is found, set to the last matched line plus the address offset, if any;
38405 otherwise, unchanged.

38406 Current column : Set to the last column on which any portion of the first character in the last
38407 matched string is displayed, if a match is found; otherwise, unchanged.

38408 Move to First Character in Line

38409 Synopsis: 0 (zero)

38410 Move to the first character on the current line. The character ’0’ shall not be interpreted as a
38411 command if it is immediately preceded by a digit.

38412 If used as a motion command:

38413 1. If the cursor character is the first character in the line, it shall be an error.

38414 2. The text region shall be from the character before the cursor character up to and including
38415 the first character in the line.

38416 3. Any text copied to a buffer shall be in character mode.

38417 If not used as a motion command:

38418 Current line : Unchanged.

38419 Current column : The last column in which any portion of the first character in the line is
38420 displayed, or if the line is empty, unchanged.

1002 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38421 Execute an ex Command

38422 Synopsis: :

38423 Execute one or more ex commands.

38424 If any portion of the screen other than the last line of the screen was overwritten by any ex
38425 command (except shell), vi shall display a message indicating that it is waiting for an input from
38426 the user, and shall then read a character. This action may also be taken for other, unspecified
38427 reasons.

38428 If the next character entered is a ’:’, another ex command shall be accepted and executed. Any
38429 other character shall cause the screen to be refreshed and vi shall return to command mode.

38430 Current line : As specified for the ex command.

38431 Current column : As specified for the ex command.

38432 Repeat Find

38433 Synopsis: [count] ;

38434 This command shall be equivalent to the last F, f, T, or t command, with the specified count , and
38435 with the same search character used for the last F, f, T, or t command. If there was no previous F,
38436 f, T, or t command, it shall be an error.

38437 Shift Left

38438 Synopsis: [count] < motion

38439 If the motion command is the < command repeated:

38440 1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38441 error.

38442 2. The text region shall be from the current line, up to and including the next count −1 lines.

38443 Shift any line in the text region specified by the count and motion command one shiftwidth (see
38444 the ex shiftwidth option) toward the start of the line, as described by the ex < command. The
38445 unshifted lines shall be copied to the unnamed buffer in line mode.

38446 Current line : If the motion was from the current cursor position toward the end of the edit
38447 buffer, unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
38448 specified by the motion command.

38449 Current column : Set to non-<blank>.

38450 Shift Right

38451 Synopsis: [count] > motion

38452 If the motion command is the > command repeated:

38453 1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38454 error.

38455 2. The text region shall be from the current line, up to and including the next count −1 lines.

38456 Shift any line with characters in the text region specified by the count and motion command one
38457 shiftwidth (see the ex shiftwidth option) away from the start of the line, as described by the ex >
38458 command. The unshifted lines shall be copied into the unnamed buffer in line mode.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1003

vi Utilities

38459 Current line : If the motion was from the current cursor position toward the end of the edit
38460 buffer, unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
38461 specified by the motion command.

38462 Current column : Set to non-<blank>.

38463 Scan Backwards for Regular Expression

38464 Synopsis: ?

38465 Scan backwards; the ? command shall be equivalent to the / command (see Find Regular
38466 Expression (on page 1001)) with the following exceptions:

38467 1. The input prompt shall be a ’?’.

38468 2. Each search shall begin from the character before the first character of the last match (or, if
38469 it is the first search, the character before the cursor character).

38470 3. The search direction shall be from the cursor toward the beginning of the edit buffer, and
38471 the wrapscan edit option shall affect whether the search wraps to the end of the edit buffer
38472 and continues.

38473 4. The remembered search direction shall be set to backward.

38474 Execute

38475 Synopsis: @buffer

38476 If the buffer is specified as @, the last buffer executed shall be used. If no previous buffer has been
38477 executed, it shall be an error.

38478 Behave as if the contents of the named buffer were entered as standard input. After each line of a
38479 line-mode buffer, and all but the last line of a character mode buffer, behave as if a <newline>
38480 were entered as standard input.

38481 If an error occurs during this process, an error message shall be written, and no more characters
38482 resulting from the execution of this command shall be processed.

38483 If a count is specified, behave as if that count were entered as user input before the characters
38484 from the @ buffer were entered.

38485 Current line : As specified for the individual commands.

38486 Current column : As specified for the individual commands.

38487 Reverse Case

38488 Synopsis: [count] ˜

38489 Reverse the case of the current character and the next count −1 characters, such that lowercase
38490 characters that have uppercase counterparts shall be changed to uppercase characters, and
38491 uppercase characters that have lowercase counterparts shall be changed to lowercase characters,
38492 as prescribed by the current locale. No other characters shall be affected by this command.

38493 If there are less than count −1 characters after the cursor in the edit buffer, count shall be adjusted
38494 to the number of characters after the cursor in the edit buffer minus 1.

38495 For the purposes of this command, the next character after the last non-<newline> on the line
38496 shall be the next character in the edit buffer.

38497 Current line : Set to the line including the (count−1)th character after the cursor.

1004 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38498 Current column : Set to the last column in which any portion of the (count−1)th character after the
38499 cursor is displayed.

38500 Append

38501 Synopsis: [count] a

38502 Enter text input mode after the current cursor position. No characters already in the edit buffer
38503 shall be affected by this command. A count shall cause the input text to be appended count −1
38504 more times to the end of the input.

38505 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38506 (on page 1019)).

38507 Append at End-of-Line

38508 Synopsis: [count] A

38509 This command shall be equivalent to the vi command:

38510 $ [count] a

38511 (see Append).

38512 Move Backward to Preceding Word

38513 Synopsis: [count] b

38514 With the exception that words are used as the delimiter instead of bigwords, this command shall
38515 be equivalent to the B command.

38516 Move Backward to Preceding Bigword

38517 Synopsis: [count] B

38518 If the edit buffer is empty or the cursor is on the first character of the edit buffer, it shall be an
38519 error. If less than count bigwords begin between the cursor and the start of the edit buffer, count
38520 shall be adjusted to the number of bigword beginnings between the cursor and the start of the
38521 edit buffer.

38522 If used as a motion command:

38523 1. The text region shall be from the first character of the countth previous bigword beginning
38524 up to but not including the cursor character.

38525 2. Any text copied to a buffer shall be in character mode.

38526 If not used as a motion command:

38527 Current line : Set to the line containing the current column .

38528 Current column : Set to the last column upon which any part of the first character of the countth
38529 previous bigword is displayed.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1005

vi Utilities

38530 Change

38531 Synopsis: [buffer][count] c motion

38532 If the motion command is the c command repeated:

38533 1. The buffer text shall be in line mode.

38534 2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38535 error.

38536 3. The text region shall be from the current line up to and including the next count −1 lines.

38537 Otherwise, the buffer text mode and text region shall be as specified by the motion command.

38538 The replaced text shall be copied into buffer, if specified, and into the unnamed buffer. If the text
38539 to be replaced contains characters from more than a single line, or the buffer text is in line mode,
38540 the replaced text shall be copied into the numeric buffers as well.

38541 If the buffer text is in line mode:

38542 1. Any lines that contain characters in the region shall be deleted, and the editor shall enter
38543 text input mode at the beginning of a new line which shall replace the first line deleted.

38544 2. If the autoindent edit option is set, autoindent characters equal to the autoindent
38545 characters on the first line deleted shall be inserted as if entered by the user.

38546 Otherwise, if characters from more than one line are in the region of text:

38547 1. The text shall be deleted.

38548 2. Any text remaining in the last line in the text region shall be appended to the first line in
38549 the region, and the last line in the region shall be deleted.

38550 3. The editor shall enter text input mode after the last character not deleted from the first line
38551 in the text region, if any; otherwise, on the first column of the first line in the region.

38552 Otherwise:

38553 1. If the glyph for ’$’ is smaller than the region, the end of the region shall be marked with a
38554 ’$’.

38555 2. The editor shall enter text input mode, overwriting the region of text.

38556 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38557 (on page 1019)).

38558 Change to End-of-Line

38559 Synopsis: [buffer][count] C

38560 This command shall be equivalent to the vi command:

38561 [buffer][count] c$

38562 See the c command.

1006 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38563 Delete

38564 Synopsis: [buffer][count] d motion

38565 If the motion command is the d command repeated:

38566 1. The buffer text shall be in line mode.

38567 2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38568 error.

38569 3. The text region shall be from the current line up to and including the next count −1 lines.

38570 Otherwise, the buffer text mode and text region shall be as specified by the motion command.

38571 If in open mode, and the current line is deleted, and the line remains on the display, an ’@’
38572 character shall be displayed as the first glyph of that line.

38573 Delete the region of text into buffer, if specified, and into the unnamed buffer. If the text to be
38574 deleted contains characters from more than a single line, or the buffer text is in line mode, the
38575 deleted text shall be copied into the numeric buffers, as well.

38576 Current line : Set to the first text region line that appears in the edit buffer, unless that line has
38577 been deleted, in which case it shall be set to the last line in the edit buffer, or line 1 if the edit
38578 buffer is empty.

38579 Current column :

38580 1. If the line is empty, set to column position 1.

38581 2. Otherwise, if the buffer text is in line mode or the motion was from the cursor toward the
38582 end of the edit buffer:

38583 a. If a character from the current line is displayed in the current column, set to the last
38584 column that displays any portion of that character.

38585 b. Otherwise, set to the last column in which any portion of any character in the line is
38586 displayed.

38587 3. Otherwise, if a character is displayed in the column that began the text region, set to the
38588 last column that displays any portion of that character.

38589 4. Otherwise, set to the last column in which any portion of any character in the line is
38590 displayed.

38591 Delete to End-of-Line

38592 Synopsis: [buffer] D

38593 Delete the text from the current position to the end of the current line; equivalent to the vi
38594 command:

38595 [buffer] d$

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1007

vi Utilities

38596 Move to End-of-Word

38597 Synopsis: [count] e

38598 With the exception that words are used instead of bigwords as the delimiter, this command shall
38599 be equivalent to the E command.

38600 Move to End-of-Bigword

38601 Synopsis: [count] E

38602 If the edit buffer is empty it shall be an error. If less than count bigwords end between the cursor
38603 and the end of the edit buffer, count shall be adjusted to the number of bigword endings between
38604 the cursor and the end of the edit buffer.

38605 If used as a motion command:

38606 1. The text region shall be from the last character of the countth next bigword up to and
38607 including the cursor character.

38608 2. Any text copied to a buffer shall be in character mode.

38609 If not used as a motion command:

38610 Current line : Set to the line containing the current column.

38611 Current column : Set to the last column upon which any part of the last character of the countth
38612 next bigword is displayed.

38613 Find Character in Current Line (Forward)

38614 Synopsis: [count] f character

38615 It shall be an error if count occurrences of the character do not occur after the cursor in the line.

38616 If used as a motion command:

38617 1. The text range shall be from the cursor character up to and including the countth
38618 occurrence of the specified character after the cursor.

38619 2. Any text copied to a buffer shall be in character mode.

38620 If not used as a motion command:

38621 Current line : Unchanged.

38622 Current column : Set to the last column in which any portion of the countth occurrence of the
38623 specified character after the cursor appears in the line.

38624 Find Character in Current Line (Reverse)

38625 Synopsis: [count] F character

38626 It shall be an error if count occurrences of the character do not occur before the cursor in the line.

38627 If used as a motion command:

38628 1. The text region shall be from the countth occurrence of the specified character before the
38629 cursor, up to, but not including the cursor character.

38630 2. Any text copied to a buffer shall be in character mode.

38631 If not used as a motion command:

1008 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38632 Current line : Unchanged.

38633 Current column : Set to the last column in which any portion of the countth occurrence of the
38634 specified character before the cursor appears in the line.

38635 Move to Line

38636 Synopsis: [count] G

38637 If count is not specified, it shall default to the last line of the edit buffer. If count is greater than
38638 the last line of the edit buffer, it shall be an error.

38639 If used as a motion command:

38640 1. The text region shall be from the cursor line up to and including the specified line.

38641 2. Any text copied to a buffer shall be in line mode.

38642 If not used as a motion command:

38643 Current line : Set to count if count is specified; otherwise, the last line.

38644 Current column : Set to non-<blank>.

38645 Move to Top of Screen

38646 Synopsis: [count] H

38647 If the beginning of the line count greater than the first line of which any portion appears on the
38648 display does not exist, it shall be an error.

38649 If used as a motion command:

38650 1. If in open mode, the text region shall be the current line.

38651 2. Otherwise, the text region shall be from the starting line up to and including (the first line
38652 of the display + count −1).

38653 3. Any text copied to a buffer shall be in line mode.

38654 If not used as a motion command:

38655 If in open mode, this command shall set the current column to non-<blank> and do nothing else.

38656 Otherwise, it shall set the current line and current column as follows.

38657 Current line : Set to (the first line of the display + count −1).

38658 Current column : Set to non-<blank>.

38659 Insert Before Cursor

38660 Synopsis: [count] i

38661 Enter text input mode before the current cursor position. No characters already in the edit buffer
38662 shall be affected by this command. A count shall cause the input text to be appended count −1
38663 more times to the end of the input.

38664 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38665 (on page 1019)).

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1009

vi Utilities

38666 Insert at Beginning of Line

38667 Synopsis: [count] I

38668 This command shall be equivalent to the vi command ˆ[count]i.

38669 Join

38670 Synopsis: [count] J

38671 If the current line is the last line in the edit buffer, it shall be an error.

38672 This command shall be equivalent to the ex join command with no addresses, and an ex
38673 command count value of 1 if count was not specified or if a count of 1 was specified, and an ex
38674 command count value of count −1 for any other value of count , except that the current line and
38675 column shall be set as follows.

38676 Current line : Unchanged.

38677 Current column : The last column in which any portion of the character following the last
38678 character in the initial line is displayed, or the last non-<newline> in the line if no characters
38679 were appended.

38680 Move to Bottom of Screen

38681 Synopsis: [count] L

38682 If the beginning of the line count less than the last line of which any portion appears on the
38683 display does not exist, it shall be an error.

38684 If used as a motion command:

38685 1. If in open mode, the text region shall be the current line.

38686 2. Otherwise, the text region shall include all lines from the starting cursor line to (the last
38687 line of the display −(count −1)).

38688 3. Any text copied to a buffer shall be in line mode.

38689 If not used as a motion command:

38690 1. If in open mode, this command shall set the current column to non-<blank> and do
38691 nothing else.

38692 2. Otherwise, it shall set the current line and current column as follows.

38693 Current line : Set to (the last line of the display −(count −1)).

38694 Current column : Set to non-<blank>.

38695 Mark Position

38696 Synopsis: m letter

38697 This command shall be equivalent to the ex mark command with the specified character as an
38698 argument.

1010 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38699 Move to Middle of Screen

38700 Synopsis: M

38701 The middle line of the display shall be calculated as follows:

38702 (the top line of the display) + (((number of lines displayed) +1) /2) −1

38703 If used as a motion command:

38704 1. If in open mode, the text region shall be the current line.

38705 2. Otherwise, the text region shall include all lines from the starting cursor line up to and
38706 including the middle line of the display.

38707 3. Any text copied to a buffer shall be in line mode.

38708 If not used as a motion command:

38709 If in open mode, this command shall set the current column to non-<blank> and do nothing else.

38710 Otherwise, it shall set the current line and current column as follows.

38711 Current line : Set to the middle line of the display.

38712 Current column : Set to non-<blank>.

38713 Repeat Regular Expression Find (Forward)

38714 Synopsis: n

38715 If the remembered search direction was forward, the n command shall be equivalent to the vi /
38716 command with no characters entered by the user. Otherwise, it shall be equivalent to the vi ?
38717 command with no characters entered by the user.

38718 If the n command is used as a motion command for the ! command, the editor shall not enter
38719 text input mode on the last line on the screen, and shall behave as if the user entered a single ’!’
38720 character as the text input.

38721 Repeat Regular Expression Find (Reverse)

38722 Synopsis: N

38723 Scan for the next match of the last pattern given to / or ?, but in the reverse direction; this is the
38724 reverse of n.

38725 If the remembered search direction was forward, the N command shall be equivalent to the vi ?
38726 command with no characters entered by the user. Otherwise, it shall be equivalent to the vi /
38727 command with no characters entered by the user. If the N command is used as a motion
38728 command for the ! command, the editor shall not enter text input mode on the last line on the
38729 screen, and shall behave as if the user entered a single ! character as the text input.

38730 Insert Empty Line Below

38731 Synopsis: o

38732 Enter text input mode in a new line appended after the current line. A count shall cause the input
38733 text to be appended count −1 more times to the end of the already added text, each time starting
38734 on a new, appended line.

38735 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38736 (on page 1019)).

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1011

vi Utilities

38737 Insert Empty Line Above

38738 Synopsis: O

38739 Enter text input mode in a new line inserted before the current line. A count shall cause the input
38740 text to be appended count −1 more times to the end of the already added text, each time starting
38741 on a new, appended line.

38742 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38743 (on page 1019)).

38744 Put from Buffer Following

38745 Synopsis: [buffer] p

38746 If no buffer is specified, the unnamed buffer shall be used.

38747 If the buffer text is in line mode, the text shall be appended below the current line, and each line
38748 of the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
38749 appended count −1 more times to the end of the already added text, each time starting on a new,
38750 appended line.

38751 If the buffer text is in character mode, the text shall be appended into the current line after the
38752 cursor, and each line of the buffer other than the first and last shall become a new line in the edit
38753 buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the
38754 already added text, each time starting after the last added character.

38755 Current line : If the buffer text is in line mode, set the line to line +1; otherwise, unchanged.

38756 Current column : If the buffer text is in line mode:

38757 1. If there is a non-<blank> in the first line of the buffer, set to the last column on which any
38758 portion of the first non-<blank> in the line is displayed.

38759 2. If there is no non-<blank> in the first line of the buffer, set to the last column on which any
38760 portion of the last non-<newline> in the first line of the buffer is displayed.

38761 If the buffer text is in character mode:

38762 1. If the text in the buffer is from more than a single line, then set to the last column on which
38763 any portion of the first character from the buffer is displayed.

38764 2. Otherwise, if the buffer is the unnamed buffer, set to the last column on which any portion
38765 of the last character from the buffer is displayed.

38766 3. Otherwise, set to the first column on which any portion of the first character from the
38767 buffer is displayed.

38768 Put from Buffer Before

38769 Synopsis: [buffer] P

38770 If no buffer is specified, the unnamed buffer shall be used.

38771 If the buffer text is in line mode, the text shall be inserted above the current line, and each line of
38772 the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
38773 appended count −1 more times to the end of the already added text, each time starting on a new,
38774 appended line.

38775 If the buffer text is in character mode, the text shall be inserted into the current line before the
38776 cursor, and each line of the buffer other than the first and last shall become a new line in the edit
38777 buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the

1012 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38778 already added text, each time starting after the last added character.

38779 Current line : Unchanged.

38780 Current column : If the buffer text is in line mode:

38781 1. If there is a non-<blank> in the first line of the buffer, set to the last column on which any
38782 portion of that character is displayed.

38783 2. If there is no non-<blank> in the first line of the buffer, set to the last column on which any
38784 portion of the last non-<newline> in the first line of the buffer is displayed.

38785 If the buffer text is in character mode:

38786 1. If the buffer is the unnamed buffer, set to the last column on which any portion of the last
38787 character from the buffer is displayed.

38788 2. Otherwise, set to the first column on which any portion of the first character from the
38789 buffer is displayed.

38790 Enter ex Mode

38791 Synopsis: Q

38792 Leave visual or open mode and enter ex command mode.

38793 Current line : Unchanged.

38794 Current column : Unchanged.

38795 Replace Character

38796 Synopsis: [count] r character

38797 Replace the count characters at and after the cursor with the specified character. If there are less
38798 than count non-<newline>s at and after the cursor on the line, it shall be an error.

38799 If character is <control>-V, any next character other than the <newline> shall be stripped of any
38800 special meaning and used as a literal character.

38801 If character is <ESC>, no replacement shall be made and the current line and current column
38802 shall be unchanged.

38803 If character is <carriage-return> or <newline>, count new lines shall be appended to the current
38804 line. All but the last of these lines shall be empty. count characters at and after the cursor shall be
38805 discarded, and any remaining characters after the cursor in the current line shall be moved to the
38806 last of the new lines. If the autoindent edit option is set, they shall be preceded by the same
38807 number of autoindent characters found on the line from which the command was executed.

38808 Current line : Unchanged unless the replacement character is a <carriage-return> or <newline>,
38809 in which case it shall be set to line + count .

38810 Current column : Set to the last column position on which a portion of the last replaced character
38811 is displayed, or if the replacement character caused new lines to be created, set to non-<blank>.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1013

vi Utilities

38812 Replace Characters

38813 Synopsis: R

38814 Enter text input mode at the current cursor position possibly replacing text on the current line. A
38815 count shall cause the input text to be appended count −1 more times to the end of the input.

38816 Current line/column: As specified for the text input commands (see Input Mode Commands in vi
38817 (on page 1019)).

38818 Substitute Character

38819 Synopsis: [buffer][count] s

38820 This command shall be equivalent to the vi command:

38821 [buffer][count] c<space>

38822 Substitute Lines

38823 Synopsis: [buffer][count] S

38824 This command shall be equivalent to the vi command:

38825 [buffer][count] c_

38826 Move Cursor to Before Character (Forward)

38827 Synopsis: [count] t character

38828 It shall be an error if count occurrences of the character do not occur after the cursor in the line.

38829 If used as a motion command:

38830 1. The text region shall be from the cursor up to but not including the countth occurrence of
38831 the specified character after the cursor.

38832 2. Any text copied to a buffer shall be in character mode.

38833 If not used as a motion command:

38834 Current line : Unchanged.

38835 Current column : Set to the last column in which any portion of the character before the countth
38836 occurrence of the specified character after the cursor appears in the line.

38837 Move Cursor to After Character (Reverse)

38838 Synopsis: [count] T character

38839 It shall be an error if count occurrences of the character do not occur before the cursor in the line.

38840 If used as a motion command:

38841 1. If the character before the cursor is the specified character, it shall be an error.

38842 2. The text region shall be from the character before the cursor up to but not including the
38843 countth occurrence of the specified character before the cursor.

38844 3. Any text copied to a buffer shall be in character mode.

38845 If not used as a motion command:

1014 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38846 Current line : Unchanged.

38847 Current column : Set to the last column in which any portion of the character after the countth
38848 occurrence of the specified character before the cursor appears in the line.

38849 Undo

38850 Synopsis: u

38851 This command shall be equivalent to the ex undo command except that the current line and
38852 current column shall be set as follows:

38853 Current line : Set to the first line added or changed if any; otherwise, move to the line preceding
38854 any deleted text if one exists; otherwise, move to line 1.

38855 Current column : If undoing an ex command, set to the first non-<blank>.

38856 Otherwise, if undoing a text input command:

38857 1. If the command was a C, c, O, o, R, S, or s command, the current column shall be set to the
38858 value it held when the text input command was entered.

38859 2. Otherwise, set to the last column in which any portion of the first character after the
38860 deleted text is displayed, or, if no non-<newline>s follow the text deleted from this line, set
38861 to the last column in which any portion of the last non-<newline> in the line is displayed,
38862 or 1 if the line is empty.

38863 Otherwise, if a single line was modified (that is, not added or deleted) by the u command:

38864 1. If text was added or changed, set to the last column in which any portion of the first
38865 character added or changed is displayed.

38866 2. If text was deleted, set to the last column in which any portion of the first character after
38867 the deleted text is displayed, or, if no non-<newline>s follow the deleted text, set to the last
38868 column in which any portion of the last non-<newline> in the line is displayed, or 1 if the
38869 line is empty.

38870 Otherwise, set to non-<blank>.

38871 Undo Current Line

38872 Synopsis: U

38873 Restore the current line to its state immediately before the most recent time that it became the
38874 current line.

38875 Current line : Unchanged.

38876 Current column : Set to the first column in the line in which any portion of the first character in
38877 the line is displayed.

38878 Move to Beginning of Word

38879 Synopsis: [count] w

38880 With the exception that words are used as the delimiter instead of bigwords, this command shall
38881 be equivalent to the W command.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1015

vi Utilities

38882 Move to Beginning of Bigword

38883 Synopsis: [count] W

38884 If the edit buffer is empty, it shall be an error. If there are less than count bigwords between the
38885 cursor and the end of the edit buffer, count shall be adjusted to move the cursor to the last
38886 bigword in the edit buffer.

38887 If used as a motion command:

38888 1. If the associated command is c, count is 1, and the cursor is on a <blank>, the region of text
38889 shall be the current character and no further action shall be taken.

38890 2. If there are less than count bigwords between the cursor and the end of the edit buffer, then
38891 the command shall succeed, and the region of text shall include the last character of the
38892 edit buffer.

38893 3. If there are <blank>s or an end-of-line that precede the countth bigword, and the associated
38894 command is c, the region of text shall be up to and including the last character before the
38895 preceding <blank>s or end-of-line.

38896 4. If there are <blank>s or an end-of-line that precede the bigword, and the associated
38897 command is d or y, the region of text shall be up to and including the last <blank> before
38898 the start of the bigword or end-of-line.

38899 5. Any text copied to a buffer shall be in character mode.

38900 If not used as a motion command:

38901 1. If the cursor is on the last character of the edit buffer, it shall be an error.

38902 Current line : Set to the line containing the current column.

38903 Current column : Set to the last column in which any part of the first character of the countth next
38904 bigword is displayed.

38905 Delete Character at Cursor

38906 Synopsis: [buffer][count] x

38907 Delete the count characters at and after the current character into buffer, if specified, and into the
38908 unnamed buffer.

38909 If the line is empty, it shall be an error. If there are less than count non-<newline>s at and after
38910 the cursor on the current line, count shall be adjusted to the number of non-<newline>s at and
38911 after the cursor.

38912 Current line : Unchanged.

38913 Current column : If the line is empty, set to column position 1. Otherwise, if there were count or
38914 less non-<newline>s at and after the cursor on the current line, set to the last column that
38915 displays any part of the last non-<newline> of the line. Otherwise, unchanged.

1016 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38916 Delete Character Before Cursor

38917 Synopsis: [buffer][count] X

38918 Delete the count characters before the current character into buffer, if specified, and into the
38919 unnamed buffer.

38920 If there are no characters before the current character on the current line, it shall be an error. If
38921 there are less than count previous characters on the current line, count shall be adjusted to the
38922 number of previous characters on the line.

38923 Current line : Unchanged.

38924 Current column : Set to (current column − the width of the deleted characters).

38925 Yank

38926 Synopsis: [buffer][count] y motion

38927 Copy (yank) the region of text into buffer, if specified, and into the unnamed buffer.

38928 If the motion command is the y command repeated:

38929 1. The buffer shall be in line mode.

38930 2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
38931 error.

38932 3. The text region shall be from the current line up to and including the next count −1 lines.

38933 Otherwise, the buffer text mode and text region shall be as specified by the motion command.

38934 Current line : If the motion was from the current cursor position toward the end of the edit
38935 buffer, unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
38936 specified by the motion command.

38937 Current column :

38938 1. If the motion was from the current cursor position toward the end of the edit buffer,
38939 unchanged.

38940 2. Otherwise, if the current line is empty, set to column position 1.

38941 3. Otherwise, set to the last column that displays any part of the first character in the file that
38942 is part of the text region specified by the motion command.

38943 Yank Current Line

38944 Synopsis: [buffer][count] Y

38945 This command shall be equivalent to the vi command:

38946 [buffer][count] y_

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1017

vi Utilities

38947 Redraw Window

38948 If in open mode, the z command shall have the Synopsis:

38949 Synopsis: [count] z

38950 If count is not specified, it shall default to the window edit option −1. The z command shall be
38951 equivalent to the ex z command, with a type character of = and a count of count −2, except that
38952 the current line and current column shall be set as follows, and the window edit option shall not
38953 be affected. If the calculation for the count argument would result in a negative number, the
38954 count argument to the ex z command shall be zero. A blank line shall be written after the last line
38955 is written.

38956 Current line : Unchanged.

38957 Current column : Unchanged.

38958 If not in open mode, the z command shall have the following Synopsis:

38959 Synopsis: [line] z [count] character

38960 If line is not specified, it shall default to the current line. If line is specified, but is greater than the
38961 number of lines in the edit buffer, it shall default to the number of lines in the edit buffer.

38962 If count is specified, the value of the window edit option shall be set to count (as described in the
38963 ex window command), and the screen shall be redrawn.

38964 line shall be placed as specified by the following characters:

38965 <newline>, <carriage-return>
38966 Place the beginning of the line on the first line of the display.

38967 . Place the beginning of the line in the center of the display. The middle line of the display
38968 shall be calculated as described for the M command.

38969 − Place an unspecified portion of the line on the last line of the display.

38970 + If line was specified, equivalent to the <newline> case. If line was not specified, display a
38971 screen where the first line of the display shall be (current last line) +1. If there are no lines
38972 after the last line in the display, it shall be an error.

38973 ^ If line was specified, display a screen where the last line of the display shall contain an
38974 unspecified portion of the first line of a display that had an unspecified portion of the
38975 specified line on the last line of the display. If this calculation results in a line before the
38976 beginning of the edit buffer, display the first screen of the edit buffer.

38977 Otherwise, display a screen where the last line of the display shall contain an unspecified
38978 portion of (current first line −1). If this calculation results in a line before the beginning of
38979 the edit buffer, it shall be an error.

38980 Current line : If line and the ’ˆ’ character were specified:

38981 1. If the first screen was displayed as a result of the command attempting to display lines
38982 before the beginning of the edit buffer: if the first screen was already displayed,
38983 unchanged; otherwise, set to (current first line −1).

38984 2. Otherwise, set to the last line of the display.

38985 If line and the ’+’ character were specified, set to the first line of the display.

38986 Otherwise, if line was specified, set to line .

1018 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

38987 Otherwise, unchanged.

38988 Current column : Set to non-<blank>.

38989 Exit

38990 Synopsis: ZZ

38991 This command shall be equivalent to the ex xit command with no addresses, trailing !, or
38992 filename (see the ex xit command).

38993 Input Mode Commands in vi

38994 In text input mode, the current line shall consist of zero or more of the following categories, plus
38995 the terminating <newline>:

38996 1. Characters preceding the text input entry point

38997 Characters in this category shall not be modified during text input mode.

38998 2. autoindent characters

38999 autoindent characters shall be automatically inserted into each line that is created in text
39000 input mode, either as a result of entering a <newline> or <carriage-return> while in text
39001 input mode, or as an effect of the command itself; for example, O or o (see the ex
39002 autoindent command), as if entered by the user.

39003 It shall be possible to erase autoindent characters with the <control>-D command; it is
39004 unspecified whether they can be erased by <control>-H, <control>-U, and <control>-W
39005 characters. Erasing any autoindent character turns the glyph into erase-columns and
39006 deletes the character from the edit buffer, but does not change its representation on the
39007 screen.

39008 3. Text input characters

39009 Text input characters are the characters entered by the user. Erasing any text input
39010 character turns the glyph into erase-columns and deletes the character from the edit buffer,
39011 but does not change its representation on the screen.

39012 Each text input character entered by the user (that does not have a special meaning) shall
39013 be treated as follows:

39014 a. The text input character shall be appended to the last character in the edit buffer
39015 from the first, second, or third categories.

39016 b. If there are no erase-columns on the screen, the text input command was the R
39017 command, and characters in the fifth category from the original line follow the
39018 cursor, the next such character shall be deleted from the edit buffer. If the slowopen
39019 edit option is not set, the corresponding glyph on the screen shall become erase-
39020 columns.

39021 c. If there are erase-columns on the screen, as many columns as they occupy, or as are
39022 necessary, shall be overwritten to display the text input character. (If only part of a
39023 multi-column glyph is overwritten, the remainder shall be left on the screen, and
39024 continue to be treated as erase-columns; it is unspecified whether the remainder of
39025 the glyph is modified in any way.)

39026 d. If additional display line columns are needed to display the text input character:

39027 1. If the slowopen edit option is set, the text input characters shall be displayed
39028 on subsequent display line columns, overwriting any characters displayed in

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1019

vi Utilities

39029 those columns.

39030 2. Otherwise, any characters currently displayed on or after the column on the
39031 display line where the text input character is to be displayed shall be pushed
39032 ahead the number of display line columns necessary to display the rest of the
39033 text input character.

39034 4. Erase-columns

39035 Erase-columns are not logically part of the edit buffer, appearing only on the screen, and
39036 may be overwritten on the screen by subsequent text input characters. When text input
39037 mode ends, all erase-columns shall no longer appear on the screen.

39038 Erase-columns are initially the region of text specified by the c command (see Change (on
39039 page 1006)); however, erasing autoindent or text input characters causes the glyphs of the
39040 erased characters to be treated as erase-columns.

39041 5. Characters following the text region for the c command, or the text input entry point for all
39042 other commands

39043 Characters in this category shall not be modified during text input mode, except as
39044 specified in category 3.b. for the R text input command, or as <blank>s deleted when a
39045 <newline> or <carriage-return> is entered.

39046 It is unspecified whether it is an error to attempt to erase past the beginning of a line that was
39047 created by the entry of a <newline> or <carriage-return> during text input mode. If it is not an
39048 error, the editor shall behave as if the erasing character was entered immediately after the last
39049 text input character entered on the previous line, and all of the non-<newline>s on the current
39050 line shall be treated as erase-columns.

39051 When text input mode is entered, or after a text input mode character is entered (except as
39052 specified for the special characters below), the cursor shall be positioned as follows:

39053 1. On the first column that displays any part of the first erase-column, if one exists

39054 2. Otherwise, if the slowopen edit option is set, on the first display line column after the last
39055 character in the first, second, or third categories, if one exists

39056 3. Otherwise, the first column that displays any part of the first character in the fifth category,
39057 if one exists

39058 4. Otherwise, the display line column after the last character in the first, second, or third
39059 categories, if one exists

39060 5. Otherwise, on column position 1

39061 The characters that are updated on the screen during text input mode are unspecified, other than
39062 that the last text input character shall always be updated, and, if the slowopen edit option is not
39063 set, the current cursor character shall always be updated.

39064 The following specifications are for command characters entered during text input mode.

1020 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39065 NUL

39066 Synopsis: NUL

39067 If the first character of the text input is a NUL, the most recently input text shall be input as if
39068 entered by the user, and then text input mode shall be exited. The text shall be input literally;
39069 that is, characters are neither macro or abbreviation expanded, nor are any characters interpreted
39070 in any special manner. It is unspecified whether implementations shall support more than 256
39071 bytes of remembered input text.

39072 <control>-D

39073 Synopsis: <control>-D

39074 The <control>-D character shall have no special meaning when in text input mode for a line-
39075 oriented command (see Command Descriptions in vi (on page 985)).

39076 This command need not be supported on block-mode terminals.

39077 If the cursor does not follow an autoindent character, or an autoindent character and a ’0’ or
39078 ’ˆ’ character:

39079 1. If the cursor is in column position 1, the <control>-D character shall be discarded and no
39080 further action taken.

39081 2. Otherwise, the <control>-D character shall have no special meaning.

39082 If the last input character was a ’0’, the cursor shall be moved to column position 1.

39083 Otherwise, if the last input character was a ’ˆ’, the cursor shall be moved to column position 1.
39084 In addition, the autoindent level for the next input line shall be derived from the same line from
39085 which the autoindent level for the current input line was derived.

39086 Otherwise, the cursor shall be moved back to the column after the previous shiftwidth (see the
39087 ex shiftwidth command) boundary.

39088 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39089 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39090 page 1019).

39091 Current line : Unchanged.

39092 Current column : Set to 1 if the <control>-D was preceded by a ’ˆ’ or ’0’; otherwise, set to
39093 (column −1) −((column −2) % shiftwidth).

39094 <control>-H

39095 Synopsis: <control>-H

39096 If in text input mode for a line-oriented command, and there are no characters to erase, text
39097 input mode shall be terminated, no further action shall be done for this command, and the
39098 current line and column shall be unchanged.

39099 If there are characters other than autoindent characters that have been input on the current line
39100 before the cursor, the cursor shall move back one character.

39101 Otherwise, if there are autoindent characters on the current line before the cursor, it is
39102 implementation-defined whether the <control>-H command is an error or if the cursor moves
39103 back one autoindent character.

39104 Otherwise, if the cursor is in column position 1 and there are previous lines that have been input,
39105 it is implementation-defined whether the <control>-H command is an error or if it is equivalent

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1021

vi Utilities

39106 to entering <control>-H after the last input character on the previous input line.

39107 Otherwise, it shall be an error.

39108 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39109 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39110 page 1019).

39111 The current erase character (see stty) shall cause an equivalent action to the <control>-H
39112 command, unless the previously inserted character was a backslash, in which case it shall be as
39113 if the literal current erase character had been inserted instead of the backslash.

39114 Current line : Unchanged, unless previously input lines are erased, in which case it shall be set to
39115 line −1.

39116 Current column : Set to the first column that displays any portion of the character backed up
39117 over.

39118 <newline>

39119 Synopsis: <newline>
39120 <carriage-return>
39121 <control>-J
39122 <control>-M

39123 If input was part of a line-oriented command, text input mode shall be terminated and the
39124 command shall continue execution with the input provided.

39125 Otherwise, terminate the current line. If there are no characters other than autoindent characters
39126 on the line, all characters on the line shall be discarded. Otherwise, it is unspecified whether the
39127 autoindent characters in the line are modified by entering these characters.

39128 Continue text input mode on a new line appended after the current line. If the slowopen edit
39129 option is set, the lines on the screen below the current line shall not be pushed down, but the
39130 first of them shall be cleared and shall appear to be overwritten. Otherwise, the lines of the
39131 screen below the current line shall be pushed down.

39132 If the autoindent edit option is set, an appropriate number of autoindent characters shall be
39133 added as a prefix to the line as described by the ex autoindent edit option.

39134 All columns after the cursor that are erase-columns (as described in Input Mode Commands in
39135 vi (on page 1019)) shall be discarded.

39136 If the autoindent edit option is set, all <blank>s immediately following the cursor shall be
39137 discarded.

39138 All remaining characters after the cursor shall be transferred to the new line, positioned after any
39139 autoindent characters.

39140 Current line : Set to current line +1.

39141 Current column : Set to the first column that displays any portion of the first character after the
39142 autoindent characters on the new line, if any, or the first column position after the last
39143 autoindent character, if any, or column position 1.

1022 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39144 <control>-T

39145 Synopsis: <control>-T

39146 The <control>-T character shall have no special meaning when in text input mode for a line-
39147 oriented command (see Command Descriptions in vi (on page 985)).

39148 This command need not be supported on block-mode terminals.

39149 Behave as if the user entered the minimum number of <blank>s necessary to move the cursor
39150 forward to the column position after the next shiftwidth (see the ex shiftwidth command)
39151 boundary.

39152 Current line : Unchanged.

39153 Current column : Set to column + shiftwidth − ((column −1) % shiftwidth).

39154 <control>-U

39155 Synopsis: <control>-U

39156 If there are characters other than autoindent characters that have been input on the current line
39157 before the cursor, the cursor shall move to the first character input after the autoindent
39158 characters.

39159 Otherwise, if there are autoindent characters on the current line before the cursor, it is
39160 implementation-defined whether the <control>-U command is an error or if the cursor moves to
39161 the first column position on the line.

39162 Otherwise, if the cursor is in column position 1 and there are previous lines that have been input,
39163 it is implementation-defined whether the <control>-U command is an error or if it is equivalent
39164 to entering <control>-U after the last input character on the previous input line.

39165 Otherwise, it shall be an error.

39166 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39167 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39168 page 1019).

39169 The current kill character (see stty) shall cause an equivalent action to the <control>-U
39170 command, unless the previously inserted character was a backslash, in which case it shall be as
39171 if the literal current kill character had been inserted instead of the backslash.

39172 Current line : Unchanged, unless previously input lines are erased, in which case it shall be set to
39173 line −1.

39174 Current column : Set to the first column that displays any portion of the last character backed up
39175 over.

39176 <control>-V

39177 Synopsis: <control>-V
39178 <control>-Q

39179 Allow the entry of any subsequent character, other than <control>-J or the <newline>, as a literal
39180 character, removing any special meaning that it may have to the editor in text input mode. If a
39181 <control>-V or <control>-Q is entered before a <control>-J or <newline>, the <control>-V or
39182 <control>-Q character shall be discarded, and the <control>-J or <newline> shall behave as
39183 described in the <newline> command character during input mode.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1023

vi Utilities

39184 For purposes of the display only, the editor shall behave as if a ’ˆ’ character was entered, and
39185 the cursor shall be positioned as if overwriting the ’ˆ’ character. When a subsequent character
39186 is entered, the editor shall behave as if that character was entered instead of the original
39187 <control>-V or <control>-Q character.

39188 Current line : Unchanged.

39189 Current column : Unchanged.

39190 <control>-W

39191 Synopsis: <control>-W

39192 If there are characters other than autoindent characters that have been input on the current line
39193 before the cursor, the cursor shall move back over the last word preceding the cursor (including
39194 any <blank>s between the end of the last word and the current cursor); the cursor shall not
39195 move to before the first character after the end of any autoindent characters.

39196 Otherwise, if there are autoindent characters on the current line before the cursor, it is
39197 implementation-defined whether the <control>-W command is an error or if the cursor moves to
39198 the first column position on the line.

39199 Otherwise, if the cursor is in column position 1 and there are previous lines that have been input,
39200 it is implementation-defined whether the <control>-W command is an error or if it is equivalent
39201 to entering <control>-W after the last input character on the previous input line.

39202 Otherwise, it shall be an error.

39203 All of the glyphs on columns between the starting cursor position and (inclusively) the ending
39204 cursor position shall become erase-columns as described in Input Mode Commands in vi (on
39205 page 1019).

39206 Current line : Unchanged, unless previously input lines are erased, in which case it shall be set to
39207 line −1.

39208 Current column : Set to the first column that displays any portion of the last character backed up
39209 over.

39210 <ESC>

39211 Synopsis: <ESC>

39212 If input was part of a line-oriented command:

39213 1. If interrupt was entered, text input mode shall be terminated and the editor shall return to
39214 command mode. The terminal shall be alerted.

39215 2. If <ESC> was entered, text input mode shall be terminated and the command shall
39216 continue execution with the input provided.

39217 Otherwise, terminate text input mode and return to command mode.

39218 Any autoindent characters entered on newly created lines that have no other non-<newline>s
39219 shall be deleted.

39220 Any leading autoindent and <blank>s on newly created lines shall be rewritten to be the
39221 minimum number of <blank>s possible.

39222 The screen shall be redisplayed as necessary to match the contents of the edit buffer.

39223 Current line : Unchanged.

1024 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39224 Current column :

39225 1. If there are text input characters on the current line, the column shall be set to the last
39226 column where any portion of the last text input character is displayed.

39227 2. Otherwise, if a character is displayed in the current column, unchanged.

39228 3. Otherwise, set to column position 1.

39229 EXIT STATUS
39230 The following exit values shall be returned:

39231 0 Successful completion.

39232 >0 An error occurred.

39233 CONSEQUENCES OF ERRORS
39234 When any error is encountered and the standard input is not a terminal device file, vi shall not
39235 write the file or return to command or text input mode, and shall terminate with a non-zero exit
39236 status.

39237 Otherwise, when an unrecoverable error is encountered it shall be equivalent to a SIGHUP
39238 asynchronous event.

39239 Otherwise, when an error is encountered, the editor shall behave as specified in Command
39240 Descriptions in vi (on page 985).

39241 APPLICATION USAGE
39242 None.

39243 EXAMPLES
39244 None.

39245 RATIONALE
39246 See the RATIONALE for ex for more information on vi. Major portions of the vi utility
39247 specification point to ex to avoid inadvertent divergence. While ex and vi have historically been
39248 implemented as a single utility, this is not required by IEEE Std 1003.1-2001.

39249 It is recognized that portions of vi would be difficult, if not impossible, to implement
39250 satisfactorily on a block-mode terminal, or a terminal without any form of cursor addressing,
39251 thus it is not a mandatory requirement that such features should work on all terminals. It is the
39252 intention, however, that a vi implementation should provide the full set of capabilities on all
39253 terminals capable of supporting them.

39254 Historically, vi exited immediately if the standard input was not a terminal. IEEE Std 1003.1-2001
39255 permits, but does not require, this behavior. An end-of-file condition is not equivalent to an
39256 end-of-file character. A common end-of-file character, <control>-D, is historically a vi command.

39257 The text in the STDOUT section reflects the usage of the verb display in this section; some
39258 implementations of vi use standard output to write to the terminal, but IEEE Std 1003.1-2001
39259 does not require that to be the case.

39260 Historically, implementations reverted to open mode if the terminal was incapable of
39261 supporting full visual mode. IEEE Std 1003.1-2001 requires this behavior. Historically, the open
39262 mode of vi behaved roughly equivalently to the visual mode, with the exception that only a
39263 single line from the edit buffer (one ‘‘buffer line’’) was kept current at any time. This line was
39264 normally displayed on the next-to-last line of a terminal with cursor addressing (and the last line
39265 performed its normal visual functions for line-oriented commands and messages). In addition,
39266 some few commands behaved differently in open mode than in visual mode.
39267 IEEE Std 1003.1-2001 requires conformance to historical practice.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1025

vi Utilities

39268 Historically, ex and vi implementations have expected text to proceed in the usual
39269 European/Latin order of left to right, top to bottom. There is no requirement in
39270 IEEE Std 1003.1-2001 that this be the case. The specification was deliberately written using
39271 words like ‘‘before’’, ‘‘after’’, ‘‘first’’, and ‘‘last’’ in order to permit implementations to support
39272 the natural text order of the language.

39273 Historically, lines past the end of the edit buffer were marked with single tilde (’˜’) characters;
39274 that is, if the one-based display was 20 lines in length, and the last line of the file was on line one,
39275 then lines 2-20 would contain only a single ’˜’ character.

39276 Historically, the vi editor attempted to display only complete lines at the bottom of the screen (it
39277 did display partial lines at the top of the screen). If a line was too long to fit in its entirety at the
39278 bottom of the screen, the screen lines where the line would have been displayed were displayed
39279 as single ’@’ characters, instead of displaying part of the line. IEEE Std 1003.1-2001 permits, but
39280 does not require, this behavior. Implementations are encouraged to attempt always to display a
39281 complete line at the bottom of the screen when doing scrolling or screen positioning by buffer
39282 lines.

39283 Historically, lines marked with ’@’ were also used to minimize output to dumb terminals over
39284 slow lines; that is, changes local to the cursor were updated, but changes to lines on the screen
39285 that were not close to the cursor were simply marked with an ’@’ sign instead of being updated
39286 to match the current text. IEEE Std 1003.1-2001 permits, but does not require this feature because
39287 it is used ever less frequently as terminals become smarter and connections are faster.

39288 Initialization in ex and vi

39289 Historically, vi always had a line in the edit buffer, even if the edit buffer was ‘‘empty’’. For
39290 example:

39291 1. The ex command = executed from visual mode wrote ‘‘1’’ when the buffer was empty.

39292 2. Writes from visual mode of an empty edit buffer wrote files of a single character (a
39293 <newline>), while writes from ex mode of an empty edit buffer wrote empty files.

39294 3. Put and read commands into an empty edit buffer left an empty line at the top of the edit
39295 buffer.

39296 For consistency, IEEE Std 1003.1-2001 does not permit any of these behaviors.

39297 Historically, vi did not always return the terminal to its original modes; for example, ICRNL was
39298 modified if it was not originally set. IEEE Std 1003.1-2001 does not permit this behavior.

39299 Command Descriptions in vi

39300 Motion commands are among the most complicated aspects of vi to describe. With some
39301 exceptions, the text region and buffer type effect of a motion command on a vi command are
39302 described on a case-by-case basis. The descriptions of text regions in IEEE Std 1003.1-2001 are
39303 not intended to imply direction; that is, an inclusive region from line n to line n+5 is identical to
39304 a region from line n+5 to line n. This is of more than academic interest—movements to marks
39305 can be in either direction, and, if the wrapscan option is set, so can movements to search points.
39306 Historically, lines are always stored into buffers in text order; that is, from the start of the edit
39307 buffer to the end. IEEE Std 1003.1-2001 requires conformance to historical practice.

39308 Historically, command counts were applied to any associated motion, and were multiplicative
39309 to any supplied motion count. For example, 2cw is the same as c2w, and 2c3w is the same as
39310 c6w. IEEE Std 1003.1-2001 requires this behavior. Historically, vi commands that used bigwords,
39311 words, paragraphs, and sentences as objects treated groups of empty lines, or lines that
39312 contained only <blank>s, inconsistently. Some commands treated them as a single entity, while

1026 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39313 others treated each line separately. For example, the w, W, and B commands treated groups of
39314 empty lines as individual words; that is, the command would move the cursor to each new
39315 empty line. The e and E commands treated groups of empty lines as a single word; that is, the
39316 first use would move past the group of lines. The b command would just beep at the user, or if
39317 done from the start of the line as a motion command, fail in unexpected ways. If the lines
39318 contained only (or ended with) <blank>s, the w and W commands would just beep at the user,
39319 the E and e commands would treat the group as a single word, and the B and b commands
39320 would treat the lines as individual words. For consistency and simplicity of specification,
39321 IEEE Std 1003.1-2001 requires that all vi commands treat groups of empty or blank lines as a
39322 single entity, and that movement through lines ending with <blank>s be consistent with other
39323 movements.

39324 Historically, vi documentation indicated that any number of double quotes were skipped after
39325 punctuation marks at sentence boundaries; however, implementations only skipped single
39326 quotes. IEEE Std 1003.1-2001 requires both to be skipped.

39327 Historically, the first and last characters in the edit buffer were word boundaries. This historical
39328 practice is required by IEEE Std 1003.1-2001.

39329 Historically, vi attempted to update the minimum number of columns on the screen possible,
39330 which could lead to misleading information being displayed. IEEE Std 1003.1-2001 makes no
39331 requirements other than that the current character being entered is displayed correctly, leaving
39332 all other decisions in this area up to the implementation.

39333 Historically, lines were arbitrarily folded between columns of any characters that required
39334 multiple column positions on the screen, with the exception of tabs, which terminated at the
39335 right-hand margin. IEEE Std 1003.1-2001 permits the former and requires the latter.
39336 Implementations that do not arbitrarily break lines between columns of characters that occupy
39337 multiple column positions should not permit the cursor to rest on a column that does not
39338 contain any part of a character.

39339 The historical vi had a problem in that all movements were by buffer lines, not by display or
39340 screen lines. This is often the right thing to do; for example, single line movements, such as j or
39341 k, should work on buffer lines. Commands like dj, or j., where . is a change command, only
39342 make sense for buffer lines. It is not, however, the right thing to do for screen motion or scrolling
39343 commands like <control>-D, <control>-F, and H. If the window is fairly small, using buffer lines
39344 in these cases can result in completely random motion; for example, 1<control>-D can result in a
39345 completely changed screen, without any overlap. This is clearly not what the user wanted. The
39346 problem is even worse in the case of the H, L, and M commands—as they position the cursor at
39347 the first non-<blank> of the line, they may all refer to the same location in large lines, and will
39348 result in no movement at all.

39349 In addition, if the line is larger than the screen, using buffer lines can make it impossible to
39350 display parts of the line—there are not any commands that do not display the beginning of the
39351 line in historical vi, and if both the beginning and end of the line cannot be on the screen at the
39352 same time, the user suffers. Finally, the page and half-page scrolling commands historically
39353 moved to the first non-<blank> in the new line. If the line is approximately the same size as the
39354 screen, this is inadequate because the cursor before and after a <control>-D command will refer
39355 to the same location on the screen.

39356 Implementations of ex and vi exist that do not have these problems because the relevant
39357 commands (<control>-B, <control>-D, <control>-F, <control>-U, <control>-Y, <control>-E, H, L,
39358 and M) operate on display (screen) lines, not (edit) buffer lines.

39359 IEEE Std 1003.1-2001 does not permit this behavior by default because the standard developers
39360 believed that users would find it too confusing. However, historical practice has been relaxed.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1027

vi Utilities

39361 For example, ex and vi historically attempted, albeit sometimes unsuccessfully, to never put part
39362 of a line on the last lines of a screen; for example, if a line would not fit in its entirety, no part of
39363 the line was displayed, and the screen lines corresponding to the line contained single ’@’
39364 characters. This behavior is permitted, but not required by IEEE Std 1003.1-2001, so that it is
39365 possible for implementations to support long lines in small screens more reasonably without
39366 changing the commands to be oriented to the display (instead of oriented to the buffer).
39367 IEEE Std 1003.1-2001 also permits implementations to refuse to edit any edit buffer containing a
39368 line that will not fit on the screen in its entirety.

39369 The display area (for example, the value of the window edit option) has historically been
39370 ‘‘grown’’, or expanded, to display new text when local movements are done in displays where
39371 the number of lines displayed is less than the maximum possible. Expansion has historically
39372 been the first choice, when the target line is less than the maximum possible expansion value
39373 away. Scrolling has historically been the next choice, done when the target line is less than half a
39374 display away, and otherwise, the screen was redrawn. There were exceptions, however, in that
39375 ex commands generally always caused the screen to be redrawn. IEEE Std 1003.1-2001 does not
39376 specify a standard behavior because there may be external issues, such as connection speed, the
39377 number of characters necessary to redraw as opposed to scroll, or terminal capabilities that
39378 implementations will have to accommodate.

39379 The current line in IEEE Std 1003.1-2001 maps one-to-one to a buffer line in the file. The current
39380 column does not. There are two different column values that are described by
39381 IEEE Std 1003.1-2001. The first is the current column value as set by many of the vi commands.
39382 This value is remembered for the lifetime of the editor. The second column value is the actual
39383 position on the screen where the cursor rests. The two are not always the same. For example,
39384 when the cursor is backed by a multi-column character, the actual cursor position on the screen
39385 has historically been the last column of the character in command mode, and the first column of
39386 the character in input mode.

39387 Commands that set the current line, but that do not set the current cursor value (for example, j
39388 and k) attempt to get as close as possible to the remembered column position, so that the cursor
39389 tends to restrict itself to a vertical column as the user moves around in the edit buffer.
39390 IEEE Std 1003.1-2001 requires conformance to historical practice, requiring that the display
39391 location of the cursor on the display line be adjusted from the current column value as necessary
39392 to support this historical behavior.

39393 Historically, only a single line (and for some terminals, a single line minus 1 column) of
39394 characters could be entered by the user for the line-oriented commands; that is, :, !, /, or ?.
39395 IEEE Std 1003.1-2001 permits, but does not require, this limitation.

39396 Historically, ‘‘soft’’ errors in vi caused the terminal to be alerted, but no error message was
39397 displayed. As a general rule, no error message was displayed for errors in command execution
39398 in vi, when the error resulted from the user attempting an invalid or impossible action, or when
39399 a searched-for object was not found. Examples of soft errors included h at the left margin,
39400 <control>-B or [[at the beginning of the file, 2G at the end of the file, and so on. In addition,
39401 errors such as %,]], },), N, n, f, F, t, and T failing to find the searched-for object were soft as well.
39402 Less consistently, / and ? displayed an error message if the pattern was not found, /, ?, N, and n
39403 displayed an error message if no previous regular expression had been specified, and ; did not
39404 display an error message if no previous f, F, t, or T command had occurred. Also, behavior in
39405 this area might reasonably be based on a runtime evaluation of the speed of a network
39406 connection. Finally, some implementations have provided error messages for soft errors in
39407 order to assist naive users, based on the value of a verbose edit option. IEEE Std 1003.1-2001
39408 does not list specific errors for which an error message shall be displayed. Implementations
39409 should conform to historical practice in the absence of any strong reason to diverge.

1028 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39410 Page Backwards

39411 The <control>-B and <control>-F commands historically considered it an error to attempt to
39412 page past the beginning or end of the file, whereas the <control>-D and <control>-U commands
39413 simply moved to the beginning or end of the file. For consistency, IEEE Std 1003.1-2001 requires
39414 the latter behavior for all four commands. All four commands still consider it an error if the
39415 current line is at the beginning (<control>-B, <control>-U) or end (<control>-F, <control>-D) of
39416 the file. Historically, the <control>-B and <control>-F commands skip two lines in order to
39417 include overlapping lines when a single command is entered. This makes less sense in the
39418 presence of a count , as there will be, by definition, no overlapping lines. The actual calculation
39419 used by historical implementations of the vi editor for <control>-B was:

39420 ((current first line) − count x (window edit option)) +2

39421 and for <control>-F was:

39422 ((current first line) + count x (window edit option)) −2

39423 This calculation does not work well when intermixing commands with and without counts; for
39424 example, 3<control>-F is not equivalent to entering the <control>-F command three times, and is
39425 not reversible by entering the <control>-B command three times. For consistency with other vi
39426 commands that take counts, IEEE Std 1003.1-2001 requires a different calculation.

39427 Scroll Forward

39428 The 4BSD and System V implementations of vi differed on the initial value used by the scroll
39429 command. 4BSD used:

39430 ((window edit option) +1) /2

39431 while System V used the value of the scroll edit option. The System V version is specified by
39432 IEEE Std 1003.1-2001 because the standard developers believed that it was more intuitive and
39433 permitted the user a method of setting the scroll value initially without also setting the number
39434 of lines that are displayed.

39435 Scroll Forward by Line

39436 Historically, the <control>-E and <control>-Y commands considered it an error if the last and
39437 first lines, respectively, were already on the screen. IEEE Std 1003.1-2001 requires conformance
39438 to historical practice. Historically, the <control>-E and <control>-Y commands had no effect in
39439 open mode. For simplicity and consistency of specification, IEEE Std 1003.1-2001 requires that
39440 they behave as usual, albeit with a single line screen.

39441 Clear and Redisplay

39442 The historical <control>-L command refreshed the screen exactly as it was supposed to be
39443 currently displayed, replacing any ’@’ characters for lines that had been deleted but not
39444 updated on the screen with refreshed ’@’ characters. The intent of the <control>-L command is
39445 to refresh when the screen has been accidentally overwritten; for example, by a write command
39446 from another user, or modem noise.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1029

vi Utilities

39447 Redraw Screen

39448 The historical <control>-R command redisplayed only when necessary to update lines that had
39449 been deleted but not updated on the screen and that were flagged with ’@’ characters. There is
39450 no requirement that the screen be in any way refreshed if no lines of this form are currently
39451 displayed. IEEE Std 1003.1-2001 permits implementations to extend this command to refresh
39452 lines on the screen flagged with ’@’ characters because they are too long to be displayed in the
39453 current framework; however, the current line and column need not be modified.

39454 Search for tagstring

39455 Historically, the first non-<blank> at or after the cursor was the first character, and all
39456 subsequent characters that were word characters, up to the end of the line, were included. For
39457 example, with the cursor on the leading space or on the ’#’ character in the text "#bar@", the
39458 tag was "#bar". On the character ’b’ it was "bar", and on the ’a’ it was "ar".
39459 IEEE Std 1003.1-2001 requires this behavior.

39460 Replace Text with Results from Shell Command

39461 Historically, the <, >, and ! commands considered most cursor motions other than line-oriented
39462 motions an error; for example, the command >/foo<CR> succeeded, while the command >l
39463 failed, even though the text region described by the two commands might be identical. For
39464 consistency, all three commands only consider entire lines and not partial lines, and the region is
39465 defined as any line that contains a character that was specified by the motion.

39466 Move to Matching Character

39467 Other matching characters have been left implementation-defined in order to allow extensions
39468 such as matching ’<’ and ’>’ for searching HTML, or #ifdef, #else, and #endif for searching C
39469 source.

39470 Repeat Substitution

39471 IEEE Std 1003.1-2001 requires that any c and g flags specified to the previous substitute
39472 command be ignored; however, the r flag may still apply, if supported by the implementation.

39473 Return to Previous (Context or Section)

39474 The [[,]], (,), {, and } commands are all affected by ‘‘section boundaries’’, but in some historical
39475 implementations not all of the commands recognize the same section boundaries. This is a bug,
39476 not a feature, and a unique section-boundary algorithm was not described for each command.
39477 One special case that is preserved is that the sentence command moves to the end of the last line
39478 of the edit buffer while the other commands go to the beginning, in order to preserve the
39479 traditional character cut semantics of the sentence command. Historically, vi section boundaries
39480 at the beginning and end of the edit buffer were the first non-<blank> on the first and last lines
39481 of the edit buffer if one exists; otherwise, the last character of the first and last lines of the edit
39482 buffer if one exists. To increase consistency with other section locations, this has been simplified
39483 by IEEE Std 1003.1-2001 to the first character of the first and last lines of the edit buffer, or the
39484 first and the last lines of the edit buffer if they are empty.

39485 Sentence boundaries were problematic in the historical vi. They were not only the boundaries as
39486 defined for the section and paragraph commands, but they were the first non-<blank> that
39487 occurred after those boundaries, as well. Historically, the vi section commands were
39488 documented as taking an optional window size as a count preceding the command. This was not
39489 implemented in historical versions, so IEEE Std 1003.1-2001 requires that the count repeat the
39490 command, for consistency with other vi commands.

1030 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39491 Repeat

39492 Historically, mapped commands other than text input commands could not be repeated using
39493 the period command. IEEE Std 1003.1-2001 requires conformance to historical practice.

39494 The restrictions on the interpretation of special characters (for example, <control>-H) in the
39495 repetition of text input mode commands is intended to match historical practice. For example,
39496 given the input sequence:

39497 iab<control>-H<control>-H<control>-Hdef<escape>

39498 the user should be informed of an error when the sequence is first entered, but not during a
39499 command repetition. The character <control>-T is specifically exempted from this restriction.
39500 Historical implementations of vi ignored <control>-T characters that were input in the original
39501 command during command repetition. IEEE Std 1003.1-2001 prohibits this behavior.

39502 Find Regular Expression

39503 Historically, commands did not affect the line searched to or from if the motion command was a
39504 search (/, ?, N, n) and the final position was the start/end of the line. There were some special
39505 cases and vi was not consistent. IEEE Std 1003.1-2001 does not permit this behavior, for
39506 consistency. Historical implementations permitted but were unable to handle searches as
39507 motion commands that wrapped (that is, due to the edit option wrapscan) to the original
39508 location. IEEE Std 1003.1-2001 requires that this behavior be treated as an error.

39509 Historically, the syntax "/RE/0" was used to force the command to cut text in line mode.
39510 IEEE Std 1003.1-2001 requires conformance to historical practice.

39511 Historically, in open mode, a z specified to a search command redisplayed the current line
39512 instead of displaying the current screen with the current line highlighted. For consistency and
39513 simplicity of specification, IEEE Std 1003.1-2001 does not permit this behavior.

39514 Historically, trailing z commands were permitted and ignored if entered as part of a search used
39515 as a motion command. For consistency and simplicity of specification, IEEE Std 1003.1-2001 does
39516 not permit this behavior.

39517 Execute an ex Command

39518 Historically, vi implementations restricted the commands that could be entered on the colon
39519 command line (for example, append and change), and some other commands were known to
39520 cause them to fail catastrophically. For consistency, IEEE Std 1003.1-2001 does not permit these
39521 restrictions. When executing an ex command by entering :, it is not possible to enter a <newline>
39522 as part of the command because it is considered the end of the command. A different approach
39523 is to enter ex command mode by using the vi Q command (and later resuming visual mode with
39524 the ex vi command). In ex command mode, the single-line limitation does not exist. So, for
39525 example, the following is valid:

39526 Q
39527 s/break here/break\
39528 here/
39529 vi

39530 IEEE Std 1003.1-2001 requires that, if the ex command overwrites any part of the screen that
39531 would be erased by a refresh, vi pauses for a character from the user. Historically, this character
39532 could be any character; for example, a character input by the user before the message appeared,
39533 or even a mapped character. This is probably a bug, but implementations that have tried to be
39534 more rigorous by requiring that the user enter a specific character, or that the user enter a
39535 character after the message was displayed, have been forced by user indignation back into

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1031

vi Utilities

39536 historical behavior. IEEE Std 1003.1-2001 requires conformance to historical practice.

39537 Shift Left (Right)

39538 Refer to the Rationale for the ! and / commands. Historically, the < and > commands sometimes
39539 moved the cursor to the first non-<blank> (for example if the command was repeated or with _
39540 as the motion command), and sometimes left it unchanged. IEEE Std 1003.1-2001 does not
39541 permit this inconsistency, requiring instead that the cursor always move to the first non-
39542 <blank>. Historically, the < and > commands did not support buffer arguments, although some
39543 implementations allow the specification of an optional buffer. This behavior is neither required
39544 nor disallowed by IEEE Std 1003.1-2001.

39545 Execute

39546 Historically, buffers could execute other buffers, and loops, infinite and otherwise, were
39547 possible. IEEE Std 1003.1-2001 requires conformance to historical practice. The *buffer syntax of
39548 ex is not required in vi, because it is not historical practice and has been used in some vi
39549 implementations to support additional scripting languages.

39550 Reverse Case

39551 Historically, the ˜ command ignored any associated count , and acted only on the characters in
39552 the current line. For consistency with other vi commands, IEEE Std 1003.1-2001 requires that an
39553 associated count act on the next count characters, and that the command move to subsequent
39554 lines if warranted by count , to make it possible to modify large pieces of text in a reasonably
39555 efficient manner. There exist vi implementations that optionally require an associated motion
39556 command for the ˜ command. Implementations supporting this functionality are encouraged to
39557 base it on the tildedop edit option and handle the text regions and cursor positioning identically
39558 to the yank command.

39559 Append

39560 Historically, counts specified to the A, a, I, and i commands repeated the input of the first line
39561 count times, and did not repeat the subsequent lines of the input text. IEEE Std 1003.1-2001
39562 requires that the entire text input be repeated count times.

39563 Move Backward to Preceding Word

39564 Historically, vi became confused if word commands were used as motion commands in empty
39565 files. IEEE Std 1003.1-2001 requires that this be an error. Historical implementations of vi had a
39566 large number of bugs in the word movement commands, and they varied greatly in behavior in
39567 the presence of empty lines, ‘‘words’’ made up of a single character, and lines containing only
39568 <blank>s. For consistency and simplicity of specification, IEEE Std 1003.1-2001 does not permit
39569 this behavior.

39570 Change to End-of-Line

39571 Some historical implementations of the C command did not behave as described by
39572 IEEE Std 1003.1-2001 when the $ key was remapped because they were implemented by pushing
39573 the $ key onto the input queue and reprocessing it. IEEE Std 1003.1-2001 does not permit this
39574 behavior. Historically, the C, S, and s commands did not copy replaced text into the numeric
39575 buffers. For consistency and simplicity of specification, IEEE Std 1003.1-2001 requires that they
39576 behave like their respective c commands in all respects.

1032 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39577 Delete

39578 Historically, lines in open mode that were deleted were scrolled up, and an @ glyph written over
39579 the beginning of the line. In the case of terminals that are incapable of the necessary cursor
39580 motions, the editor erased the deleted line from the screen. IEEE Std 1003.1-2001 requires
39581 conformance to historical practice; that is, if the terminal cannot display the ’@’ character, the
39582 line cannot remain on the screen.

39583 Delete to End-of-Line

39584 Some historical implementations of the D command did not behave as described by
39585 IEEE Std 1003.1-2001 when the $ key was remapped because they were implemented by pushing
39586 the $ key onto the input queue and reprocessing it. IEEE Std 1003.1-2001 does not permit this
39587 behavior.

39588 Join

39589 An historical oddity of vi is that the commands J, 1J, and 2J are all equivalent.
39590 IEEE Std 1003.1-2001 requires conformance to historical practice. The vi J command is specified
39591 in terms of the ex join command with an ex command count value. The address correction for a
39592 count that is past the end of the edit buffer is necessary for historical compatibility for both ex
39593 and vi.

39594 Mark Position

39595 Historical practice is that only lowercase letters, plus ’‘’ and ’’’, could be used to mark a
39596 cursor position. IEEE Std 1003.1-2001 requires conformance to historical practice, but encourages
39597 implementations to support other characters as marks as well.

39598 Repeat Regular Expression Find (Forward and Reverse)

39599 Historically, the N and n commands could not be used as motion components for the c
39600 command. With the exception of the cN command, which worked if the search crossed a line
39601 boundary, the text region would be discarded, and the user would not be in text input mode. For
39602 consistency and simplicity of specification, IEEE Std 1003.1-2001 does not permit this behavior.

39603 Insert Empty Line (Below and Above)

39604 Historically, counts to the O and o commands were used as the number of physical lines to
39605 open, if the terminal was dumb and the slowopen option was not set. This was intended to
39606 minimize traffic over slow connections and repainting for dumb terminals. IEEE Std 1003.1-2001
39607 does not permit this behavior, requiring that a count to the open command behave as for other
39608 text input commands. This change to historical practice was made for consistency, and because a
39609 superset of the functionality is provided by the slowopen edit option.

39610 Put from Buffer (Following and Before)

39611 Historically, counts to the p and P commands were ignored if the buffer was a line mode buffer,
39612 but were (mostly) implemented as described in IEEE Std 1003.1-2001 if the buffer was a
39613 character mode buffer. Because implementations exist that do not have this limitation, and
39614 because pasting lines multiple times is generally useful, IEEE Std 1003.1-2001 requires that count
39615 be supported for all p and P commands.

39616 Historical implementations of vi were widely known to have major problems in the p and P
39617 commands, particularly when unusual regions of text were copied into the edit buffer. The
39618 standard developers viewed these as bugs, and they are not permitted for consistency and

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1033

vi Utilities

39619 simplicity of specification.

39620 Historically, a P or p command (or an ex put command executed from open or visual mode)
39621 executed in an empty file, left an empty line as the first line of the file. For consistency and
39622 simplicity of specification, IEEE Std 1003.1-2001 does not permit this behavior.

39623 Replace Character

39624 Historically, the r command did not correctly handle the erase and word erase characters as
39625 arguments, nor did it handle an associated count greater than 1 with a <carriage-return>
39626 argument, for which it replaced count characters with a single <newline>. IEEE Std 1003.1-2001
39627 does not permit these inconsistencies.

39628 Historically, the r command permitted the <control>-V escaping of entered characters, such as
39629 <ESC> and the <carriage-return>; however, it required two leading <control>-V characters
39630 instead of one. IEEE Std 1003.1-2001 requires that this be changed for consistency with the other
39631 text input commands of vi.

39632 Historically, it is an error to enter the r command if there are less than count characters at or after
39633 the cursor in the line. While a reasonable and unambiguous extension would be to permit the r
39634 command on empty lines, it would require that too large a count be adjusted to match the
39635 number of characters at or after the cursor for consistency, which is sufficiently different from
39636 historical practice to be avoided. IEEE Std 1003.1-2001 requires conformance to historical
39637 practice.

39638 Replace Characters

39639 Historically, if there were autoindent characters in the line on which the R command was run,
39640 and autoindent was set, the first <newline> would be properly indented and no characters
39641 would be replaced by the <newline>. Each additional <newline> would replace n characters,
39642 where n was the number of characters that were needed to indent the rest of the line to the
39643 proper indentation level. This behavior is a bug and is not permitted by IEEE Std 1003.1-2001.

39644 Undo

39645 Historical practice for cursor positioning after undoing commands was mixed. In most cases,
39646 when undoing commands that affected a single line, the cursor was moved to the start of added
39647 or changed text, or immediately after deleted text. However, if the user had moved from the line
39648 being changed, the column was either set to the first non-<blank>, returned to the origin of the
39649 command, or remained unchanged. When undoing commands that affected multiple lines or
39650 entire lines, the cursor was moved to the first character in the first line restored. As an example
39651 of how inconsistent this was, a search, followed by an o text input command, followed by an
39652 undo would return the cursor to the location where the o command was entered, but a cw
39653 command followed by an o command followed by an undo would return the cursor to the first
39654 non-<blank> of the line. IEEE Std 1003.1-2001 requires the most useful of these behaviors, and
39655 discards the least useful, in the interest of consistency and simplicity of specification.

1034 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39656 Yank

39657 Historically, the yank command did not move to the end of the motion if the motion was in the
39658 forward direction. It moved to the end of the motion if the motion was in the backward
39659 direction, except for the _ command, or for the G and ’ commands when the end of the motion
39660 was on the current line. This was further complicated by the fact that for a number of motion
39661 commands, the yank command moved the cursor but did not update the screen; for example, a
39662 subsequent command would move the cursor from the end of the motion, even though the
39663 cursor on the screen had not reflected the cursor movement for the yank command.
39664 IEEE Std 1003.1-2001 requires that all yank commands associated with backward motions move
39665 the cursor to the end of the motion for consistency, and specifically, to make ’ commands as
39666 motions consistent with search patterns as motions.

39667 Yank Current Line

39668 Some historical implementations of the Y command did not behave as described by
39669 IEEE Std 1003.1-2001 when the ’_’ key was remapped because they were implemented by
39670 pushing the ’_’ key onto the input queue and reprocessing it. IEEE Std 1003.1-2001 does not
39671 permit this behavior.

39672 Redraw Window

39673 Historically, the z command always redrew the screen. This is permitted but not required by
39674 IEEE Std 1003.1-2001, because of the frequent use of the z command in macros such as map n nz.
39675 for screen positioning, instead of its use to change the screen size. The standard developers
39676 believed that expanding or scrolling the screen offered a better interface for users. The ability to
39677 redraw the screen is preserved if the optional new window size is specified, and in the
39678 <control>-L and <control>-R commands.

39679 The semantics of zˆ are confusing at best. Historical practice is that the screen before the screen
39680 that ended with the specified line is displayed. IEEE Std 1003.1-2001 requires conformance to
39681 historical practice.

39682 Historically, the z command would not display a partial line at the top or bottom of the screen. If
39683 the partial line would normally have been displayed at the bottom of the screen, the command
39684 worked, but the partial line was replaced with ’@’ characters. If the partial line would normally
39685 have been displayed at the top of the screen, the command would fail. For consistency and
39686 simplicity of specification, IEEE Std 1003.1-2001 does not permit this behavior.

39687 Historically, the z command with a line specification of 1 ignored the command. For consistency
39688 and simplicity of specification, IEEE Std 1003.1-2001 does not permit this behavior.

39689 Historically, the z command did not set the cursor column to the first non-<blank> for the
39690 character if the first screen was to be displayed, and was already displayed. For consistency and
39691 simplicity of specification, IEEE Std 1003.1-2001 does not permit this behavior.

39692 Input Mode Commands in vi

39693 Historical implementations of vi did not permit the user to erase more than a single line of input,
39694 or to use normal erase characters such as line erase, worderase, and erase to erase autoindent
39695 characters. As there exist implementations of vi that do not have these limitations, both
39696 behaviors are permitted, but only historical practice is required. In the case of these extensions,
39697 vi is required to pause at the autoindent and previous line boundaries.

39698 Historical implementations of vi updated only the portion of the screen where the current cursor
39699 character was displayed. For example, consider the vi input keystrokes:

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1035

vi Utilities

39700 iabcd<escape>0C<tab>

39701 Historically, the <tab> would overwrite the characters "abcd" when it was displayed. Other
39702 implementations replace only the ’a’ character with the <tab>, and then push the rest of the
39703 characters ahead of the cursor. Both implementations have problems. The historical
39704 implementation is probably visually nicer for the above example; however, for the keystrokes:

39705 iabcd<ESC>0R<tab><ESC>

39706 the historical implementation results in the string "bcd" disappearing and then magically
39707 reappearing when the <ESC> character is entered. IEEE Std 1003.1-2001 requires the former
39708 behavior when overwriting erase-columns—that is, overwriting characters that are no longer
39709 logically part of the edit buffer—and the latter behavior otherwise.

39710 Historical implementations of vi discarded the <control>-D and <control>-T characters when
39711 they were entered at places where their command functionality was not appropriate.
39712 IEEE Std 1003.1-2001 requires that the <control>-T functionality always be available, and that
39713 <control>-D be treated as any other key when not operating on autoindent characters.

39714 NUL

39715 Some historical implementations of vi limited the number of characters entered using the NUL
39716 input character to 256 bytes. IEEE Std 1003.1-2001 permits this limitation; however,
39717 implementations are encouraged to remove this limit.

39718 <control>-D

39719 See also Rationale for the input mode command <newline>. The hidden assumptions in the
39720 <control>-D command (and in the vi autoindent specification in general) is that <space>s take
39721 up a single column on the screen and that <tab>s are comprised of an integral number of
39722 <space>s.

39723 <newline>

39724 Implementations are permitted to rewrite autoindent characters in the line when <newline>,
39725 <carriage-return>, <control>-D, and <control>-T are entered, or when the shift commands are
39726 used, because historical implementations have both done so and found it necessary to do so. For
39727 example, a <control>-D when the cursor is preceded by a single <tab>, with tabstop set to 8, and
39728 shiftwidth set to 3, will result in the <tab> being replaced by several <space>s.

39729 <control>-T

39730 See also the Rationale for the input mode command <newline>. Historically, <control>-T only
39731 worked if no non-<blank>s had yet been input in the current input line. In addition, the
39732 characters inserted by <control>-T were treated as autoindent characters, and could not be
39733 erased using normal user erase characters. Because implementations exist that do not have
39734 these limitations, and as moving to a column boundary is generally useful, IEEE Std 1003.1-2001
39735 requires that both limitations be removed.

1036 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities vi

39736 <control>-V

39737 Historically, vi used ˆV, regardless of the value of the literal-next character of the terminal.
39738 IEEE Std 1003.1-2001 requires conformance to historical practice.

39739 The uses described for <control>-V can also be accomplished with <control>-Q, which is useful
39740 on terminals that use <control>-V for the down-arrow function. However, most historical
39741 implementations use <control>-Q for the termios START character, so the editor will generally
39742 not receive the <control>-Q unless stty ixon mode is set to off. (In addition, some historical
39743 implementations of vi explicitly set ixon mode to on, so it was difficult for the user to set it to
39744 off.) Any of the command characters described in IEEE Std 1003.1-2001 can be made ineffective
39745 by their selection as termios control characters, using the stty utility or other methods described
39746 in the System Interfaces volume of IEEE Std 1003.1-2001.

39747 <ESC>

39748 Historically, SIGINT alerted the terminal when used to end input mode. This behavior is
39749 permitted, but not required, by IEEE Std 1003.1-2001.

39750 FUTURE DIRECTIONS
39751 None.

39752 SEE ALSO
39753 ed, ex, stty

39754 CHANGE HISTORY
39755 First released in Issue 2.

39756 Issue 5
39757 The FUTURE DIRECTIONS section is added.

39758 Issue 6
39759 This utility is marked as part of the User Portability Utilities option.

39760 The APPLICATION USAGE section is added.

39761 The obsolescent SYNOPSIS is removed.

39762 The following new requirements on POSIX implementations derive from alignment with the
39763 Single UNIX Specification:

39764 • The reindent command description is added.

39765 The vi utility has been extensively rewritten for alignment with the IEEE P1003.2b draft
39766 standard.

39767 IEEE PASC Interpretations 1003.2 #57, #62, #63, #64, #78, and #188 are applied.

39768 IEEE PASC Interpretation 1003.2 #207 is applied, clarifying the description of the R command in
39769 a manner similar to the descriptions of other text input mode commands such as i, o, and O.

39770 The −l option is removed.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1037

wait Utilities

39771 NAME
39772 wait — await process completion

39773 SYNOPSIS
39774 wait [pid...]

39775 DESCRIPTION
39776 When an asynchronous list (see Section 2.9.3.1 (on page 50)) is started by the shell, the process ID
39777 of the last command in each element of the asynchronous list shall become known in the current
39778 shell execution environment; see Section 2.12 (on page 61).

39779 If the wait utility is invoked with no operands, it shall wait until all process IDs known to the
39780 invoking shell have terminated and exit with a zero exit status.

39781 If one or more pid operands are specified that represent known process IDs, the wait utility shall
39782 wait until all of them have terminated. If one or more pid operands are specified that represent
39783 unknown process IDs, wait shall treat them as if they were known process IDs that exited with
39784 exit status 127. The exit status returned by the wait utility shall be the exit status of the process
39785 requested by the last pid operand.

39786 The known process IDs are applicable only for invocations of wait in the current shell execution
39787 environment.

39788 OPTIONS
39789 None.

39790 OPERANDS
39791 The following operand shall be supported:

39792 pid One of the following:

39793 1. The unsigned decimal integer process ID of a command, for which the utility
39794 is to wait for the termination.

39795 2. A job control job ID (see the Base Definitions volume of IEEE Std 1003.1-2001,
39796 Section 3.203, Job Control Job ID) that identifies a background process group
39797 to be waited for. The job control job ID notation is applicable only for
39798 invocations of wait in the current shell execution environment; see Section
39799 2.12 (on page 61). The exit status of wait shall be determined by the last
39800 command in the pipeline.

39801 Note: The job control job ID type of pid is only available on systems supporting
39802 the User Portability Utilities option.

39803 STDIN
39804 Not used.

39805 INPUT FILES
39806 None.

39807 ENVIRONMENT VARIABLES
39808 The following environment variables shall affect the execution of wait:

39809 LANG Provide a default value for the internationalization variables that are unset or null.
39810 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
39811 Internationalization Variables for the precedence of internationalization variables
39812 used to determine the values of locale categories.)

39813 LC_ALL If set to a non-empty string value, override the values of all the other
39814 internationalization variables.

1038 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities wait

39815 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
39816 characters (for example, single-byte as opposed to multi-byte characters in
39817 arguments).

39818 LC_MESSAGES
39819 Determine the locale that should be used to affect the format and contents of
39820 diagnostic messages written to standard error.

39821 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

39822 ASYNCHRONOUS EVENTS
39823 Default.

39824 STDOUT
39825 Not used.

39826 STDERR
39827 The standard error shall be used only for diagnostic messages.

39828 OUTPUT FILES
39829 None.

39830 EXTENDED DESCRIPTION
39831 None.

39832 EXIT STATUS
39833 If one or more operands were specified, all of them have terminated or were not known by the
39834 invoking shell, and the status of the last operand specified is known, then the exit status of wait
39835 shall be the exit status information of the command indicated by the last operand specified. If
39836 the process terminated abnormally due to the receipt of a signal, the exit status shall be greater
39837 than 128 and shall be distinct from the exit status generated by other signals, but the exact value
39838 is unspecified. (See the kill −l option.) Otherwise, the wait utility shall exit with one of the
39839 following values:

39840 0 The wait utility was invoked with no operands and all process IDs known by the
39841 invoking shell have terminated.

39842 1-126 The wait utility detected an error.

39843 127 The command identified by the last pid operand specified is unknown.

39844 CONSEQUENCES OF ERRORS
39845 Default.

39846 APPLICATION USAGE
39847 On most implementations, wait is a shell built-in. If it is called in a subshell or separate utility
39848 execution environment, such as one of the following:

39849 (wait)
39850 nohup wait ...
39851 find . −exec wait ... \;

39852 it returns immediately because there are no known process IDs to wait for in those
39853 environments.

39854 Historical implementations of interactive shells have discarded the exit status of terminated
39855 background processes before each shell prompt. Therefore, the status of background processes
39856 was usually lost unless it terminated while wait was waiting for it. This could be a serious
39857 problem when a job that was expected to run for a long time actually terminated quickly with a
39858 syntax or initialization error because the exit status returned was usually zero if the requested

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1039

wait Utilities

39859 process ID was not found. This volume of IEEE Std 1003.1-2001 requires the implementation to
39860 keep the status of terminated jobs available until the status is requested, so that scripts like:

39861 j1&
39862 p1=$!
39863 j2&
39864 wait $p1
39865 echo Job 1 exited with status $?
39866 wait $!
39867 echo Job 2 exited with status $?

39868 work without losing status on any of the jobs. The shell is allowed to discard the status of any
39869 process if it determines that the application cannot get the process ID for that process from the
39870 shell. It is also required to remember only {CHILD_MAX} number of processes in this way. Since
39871 the only way to get the process ID from the shell is by using the ’!’ shell parameter, the shell is
39872 allowed to discard the status of an asynchronous list if "$!" was not referenced before another
39873 asynchronous list was started. (This means that the shell only has to keep the status of the last
39874 asynchronous list started if the application did not reference "$!". If the implementation of the
39875 shell is smart enough to determine that a reference to "$!" was not saved anywhere that the
39876 application can retrieve it later, it can use this information to trim the list of saved information.
39877 Note also that a successful call to wait with no operands discards the exit status of all
39878 asynchronous lists.)

39879 If the exit status of wait is greater than 128, there is no way for the application to know if the
39880 waited-for process exited with that value or was killed by a signal. Since most utilities exit with
39881 small values, there is seldom any ambiguity. Even in the ambiguous cases, most applications
39882 just need to know that the asynchronous job failed; it does not matter whether it detected an
39883 error and failed or was killed and did not complete its job normally.

39884 EXAMPLES
39885 Although the exact value used when a process is terminated by a signal is unspecified, if it is
39886 known that a signal terminated a process, a script can still reliably determine which signal by
39887 using kill as shown by the following script:

39888 sleep 1000&
39889 pid=$!
39890 kill −kill $pid
39891 wait $pid
39892 echo $pid was terminated by a SIG$(kill −l $?) signal.

39893 If the following sequence of commands is run in less than 31 seconds:

39894 sleep 257 | sleep 31 &
39895 jobs −l %%

39896 either of the following commands returns the exit status of the second sleep in the pipeline:

39897 wait <pid of sleep 31>
39898 wait %%

39899 RATIONALE
39900 The description of wait does not refer to the waitpid () function from the System Interfaces
39901 volume of IEEE Std 1003.1-2001 because that would needlessly overspecify this interface.
39902 However, the wording means that wait is required to wait for an explicit process when it is given
39903 an argument so that the status information of other processes is not consumed. Historical
39904 implementations use the wait() function defined in the System Interfaces volume of
39905 IEEE Std 1003.1-2001 until wait() returns the requested process ID or finds that the requested

1040 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities wait

39906 process does not exist. Because this means that a shell script could not reliably get the status of
39907 all background children if a second background job was ever started before the first job finished,
39908 it is recommended that the wait utility use a method such as the functionality provided by the
39909 waitpid () function.

39910 The ability to wait for multiple pid operands was adopted from the KornShell.

39911 This new functionality was added because it is needed to determine the exit status of any
39912 asynchronous list accurately. The only compatibility problem that this change creates is for a
39913 script like

39914 while sleep 60 do
39915 job& echo Job started $(date) as $! done

39916 which causes the shell to monitor all of the jobs started until the script terminates or runs out of
39917 memory. This would not be a problem if the loop did not reference "$!" or if the script would
39918 occasionally wait for jobs it started.

39919 FUTURE DIRECTIONS
39920 None.

39921 SEE ALSO
39922 Chapter 2 (on page 29), kill , sh, the System Interfaces volume of IEEE Std 1003.1-2001, wait(),
39923 waitpid ()

39924 CHANGE HISTORY
39925 First released in Issue 2.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1041

wc Utilities

39926 NAME
39927 wc — word, line, and byte or character count

39928 SYNOPSIS
39929 wc [−c|−m][−lw][file...]

39930 DESCRIPTION
39931 The wc utility shall read one or more input files and, by default, write the number of <newline>s,
39932 words, and bytes contained in each input file to the standard output.

39933 The utility also shall write a total count for all named files, if more than one input file is
39934 specified.

39935 The wc utility shall consider a word to be a non-zero-length string of characters delimited by
39936 white space.

39937 OPTIONS
39938 The wc utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section 12.2,
39939 Utility Syntax Guidelines.

39940 The following options shall be supported:

39941 −c Write to the standard output the number of bytes in each input file.

39942 −l Write to the standard output the number of <newline>s in each input file.

39943 −m Write to the standard output the number of characters in each input file.

39944 −w Write to the standard output the number of words in each input file.

39945 When any option is specified, wc shall report only the information requested by the specified
39946 options.

39947 OPERANDS
39948 The following operand shall be supported:

39949 file A pathname of an input file. If no file operands are specified, the standard input
39950 shall be used.

39951 STDIN
39952 The standard input shall be used only if no file operands are specified. See the INPUT FILES
39953 section.

39954 INPUT FILES
39955 The input files may be of any type.

39956 ENVIRONMENT VARIABLES
39957 The following environment variables shall affect the execution of wc:

39958 LANG Provide a default value for the internationalization variables that are unset or null.
39959 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
39960 Internationalization Variables for the precedence of internationalization variables
39961 used to determine the values of locale categories.)

39962 LC_ALL If set to a non-empty string value, override the values of all the other
39963 internationalization variables.

39964 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
39965 characters (for example, single-byte as opposed to multi-byte characters in
39966 arguments and input files) and which characters are defined as white space
39967 characters.

1042 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities wc

39968 LC_MESSAGES
39969 Determine the locale that should be used to affect the format and contents of
39970 diagnostic messages written to standard error and informative messages written to
39971 standard output.

39972 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

39973 ASYNCHRONOUS EVENTS
39974 Default.

39975 STDOUT
39976 By default, the standard output shall contain an entry for each input file of the form:

39977 "%d %d %d %s\n", <newlines>, <words>, <bytes>, <file>

39978 If the −m option is specified, the number of characters shall replace the <bytes> field in this
39979 format.

39980 If any options are specified and the −l option is not specified, the number of <newline>s shall
39981 not be written.

39982 If any options are specified and the −w option is not specified, the number of words shall not be
39983 written.

39984 If any options are specified and neither −c nor −m is specified, the number of bytes or characters
39985 shall not be written.

39986 If no input file operands are specified, no name shall be written and no <blank>s preceding the
39987 pathname shall be written.

39988 If more than one input file operand is specified, an additional line shall be written, of the same
39989 format as the other lines, except that the word total (in the POSIX locale) shall be written instead
39990 of a pathname and the total of each column shall be written as appropriate. Such an additional
39991 line, if any, is written at the end of the output.

39992 STDERR
39993 The standard error shall be used only for diagnostic messages.

39994 OUTPUT FILES
39995 None.

39996 EXTENDED DESCRIPTION
39997 None.

39998 EXIT STATUS
39999 The following exit values shall be returned:

40000 0 Successful completion.

40001 >0 An error occurred.

40002 CONSEQUENCES OF ERRORS
40003 Default.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1043

wc Utilities

40004 APPLICATION USAGE
40005 The −m option is not a switch, but an option at the same level as −c. Thus, to produce the full
40006 default output with character counts instead of bytes, the command required is:

40007 wc −mlw

40008 EXAMPLES
40009 None.

40010 RATIONALE
40011 The output file format pseudo-printf() string differs from the System V version of wc:

40012 "%7d%7d%7d %s\n"

40013 which produces possibly ambiguous and unparsable results for very large files, as it assumes no
40014 number shall exceed six digits.

40015 Some historical implementations use only <space>, <tab>, and <newline> as word separators.
40016 The equivalent of the ISO C standard isspace() function is more appropriate.

40017 The −c option stands for ‘‘character’’ count, even though it counts bytes. This stems from the
40018 sometimes erroneous historical view that bytes and characters are the same size. Due to
40019 international requirements, the −m option (reminiscent of ‘‘multi-byte’’) was added to obtain
40020 actual character counts.

40021 Early proposals only specified the results when input files were text files. The current
40022 specification more closely matches historical practice. (Bytes, words, and <newline>s are
40023 counted separately and the results are written when an end-of-file is detected.)

40024 Historical implementations of the wc utility only accepted one argument to specify the options
40025 −c, −l, and −w. Some of them also had multiple occurrences of an option cause the
40026 corresponding count to be written multiple times and had the order of specification of the
40027 options affect the order of the fields on output, but did not document either of these. Because
40028 common usage either specifies no options or only one option, and because none of this was
40029 documented, the changes required by this volume of IEEE Std 1003.1-2001 should not break
40030 many historical applications (and do not break any historical conforming applications).

40031 FUTURE DIRECTIONS
40032 None.

40033 SEE ALSO
40034 cksum

40035 CHANGE HISTORY
40036 First released in Issue 2.

1044 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities what

40037 NAME
40038 what — identify SCCS files (DEVELOPMENT)

40039 SYNOPSIS
40040 XSI what [−s] file...
40041

40042 DESCRIPTION
40043 The what utility shall search the given files for all occurrences of the pattern that get (see get)
40044 substitutes for the %Z% keyword ("@(#)") and shall write to standard output what follows
40045 until the first occurrence of one of the following:

40046 " > newline \ NUL

40047 OPTIONS
40048 The what utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
40049 12.2, Utility Syntax Guidelines.

40050 The following option shall be supported:

40051 −s Quit after finding the first occurrence of the pattern in each file.

40052 OPERANDS
40053 The following operands shall be supported:

40054 file A pathname of a file to search.

40055 STDIN
40056 Not used.

40057 INPUT FILES
40058 The input files shall be of any file type.

40059 ENVIRONMENT VARIABLES
40060 The following environment variables shall affect the execution of what:

40061 LANG Provide a default value for the internationalization variables that are unset or null.
40062 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
40063 Internationalization Variables for the precedence of internationalization variables
40064 used to determine the values of locale categories.)

40065 LC_ALL If set to a non-empty string value, override the values of all the other
40066 internationalization variables.

40067 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40068 characters (for example, single-byte as opposed to multi-byte characters in
40069 arguments and input files).

40070 LC_MESSAGES
40071 Determine the locale that should be used to affect the format and contents of
40072 diagnostic messages written to standard error.

40073 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40074 ASYNCHRONOUS EVENTS
40075 Default.

40076 STDOUT
40077 The standard output shall consist of the following for each file operand:

40078 "%s:\n\t%s\n", <pathname>, <identification string>

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1045

what Utilities

40079 STDERR
40080 The standard error shall be used only for diagnostic messages.

40081 OUTPUT FILES
40082 None.

40083 EXTENDED DESCRIPTION
40084 None.

40085 EXIT STATUS
40086 The following exit values shall be returned:

40087 0 Any matches were found.

40088 1 Otherwise.

40089 CONSEQUENCES OF ERRORS
40090 Default.

40091 APPLICATION USAGE
40092 The what utility is intended to be used in conjunction with the SCCS command get, which
40093 automatically inserts identifying information, but it can also be used where the information is
40094 inserted by any other means.

40095 When the string "@(#)" is included in a library routine in a shared library, it might not be found
40096 in an a.out file using that library routine.

40097 EXAMPLES
40098 If the C-language program in file f.c contains:

40099 char ident[] = "@(#)identification information";

40100 and f.c is compiled to yield f.o and a.out, then the command:

40101 what f.c f.o a.out

40102 writes:

40103 f.c:
40104 identification information
40105 ...
40106 f.o:
40107 identification information
40108 ...
40109 a.out:
40110 identification information
40111 ...

40112 RATIONALE
40113 None.

40114 FUTURE DIRECTIONS
40115 None.

40116 SEE ALSO
40117 get

40118 CHANGE HISTORY
40119 First released in Issue 2.

1046 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities who

40120 NAME
40121 who — display who is on the system

40122 SYNOPSIS
40123 UP who [−mTu]

40124 XSI who [−mu]−s[−bHlprt][file]

40125 who [−mTu][−abdHlprt][file]

40126 who −q [file]

40127 who am i

40128 who am I
40129

40130 DESCRIPTION
40131 The who utility shall list various pieces of information about accessible users. The domain of
40132 accessibility is implementation-defined.

40133 XSI Based on the options given, who can also list the user’s name, terminal line, login time, elapsed
40134 time since activity occurred on the line, and the process ID of the command interpreter for each
40135 current system user.

40136 OPTIONS
40137 The who utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
40138 12.2, Utility Syntax Guidelines.

40139 The following options shall be supported. The metavariables, such as <line>, refer to fields
40140 described in the STDOUT section.

40141 XSI −a Process the implementation-defined database or named file with the −b, −d, −l, −p,
40142 −r, −t, −T and −u options turned on.

40143 XSI −b Write the time and date of the last reboot.

40144 XSI −d Write a list of all processes that have expired and not been respawned by the init
40145 system process. The <exit> field shall appear for dead processes and contain the
40146 termination and exit values of the dead process. This can be useful in determining
40147 why a process terminated.

40148 XSI −H Write column headings above the regular output.

40149 XSI −l (The letter ell.) List only those lines on which the system is waiting for someone to
40150 login. The <name> field shall be LOGIN in such cases. Other fields shall be the
40151 same as for user entries except that the <state> field does not exist.

40152 −m Output only information about the current terminal.

40153 XSI −p List any other process that is currently active and has been previously spawned by
40154 init.

40155 XSI −q (Quick.) List only the names and the number of users currently logged on. When
40156 this option is used, all other options shall be ignored.

40157 XSI −r Write the current run-level of the init process.

40158 XSI −s List only the <name>, <line>, and <time> fields. This is the default case.

40159 XSI −t Indicate the last change to the system clock.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1047

who Utilities

40160 −T Show the state of each terminal, as described in the STDOUT section.

40161 −u Write ‘‘idle time’’ for each displayed user in addition to any other information. The
40162 idle time is the time since any activity occurred on the user’s terminal. The method
40163 XSI of determining this is unspecified. This option shall list only those users who are
40164 currently logged in. The <name> is the user’s login name. The <line> is the name of
40165 the line as found in the directory /dev. The <time> is the time that the user logged
40166 in. The <activity> is the number of hours and minutes since activity last occurred
40167 on that particular line. A dot indicates that the terminal has seen activity in the last
40168 minute and is therefore ‘‘current’’. If more than twenty-four hours have elapsed or
40169 the line has not been used since boot time, the entry shall be marked <old>. This
40170 field is useful when trying to determine whether a person is working at the
40171 terminal or not. The <pid> is the process ID of the user’s login process.

40172 OPERANDS
40173 XSI The following operands shall be supported:

40174 am i, am I In the POSIX locale, limit the output to describing the invoking user, equivalent to
40175 the −m option. The am and i or I must be separate arguments.

40176 file Specify a pathname of a file to substitute for the implementation-defined database
40177 of logged-on users that who uses by default.

40178 STDIN
40179 Not used.

40180 INPUT FILES
40181 None.

40182 ENVIRONMENT VARIABLES
40183 The following environment variables shall affect the execution of who:

40184 LANG Provide a default value for the internationalization variables that are unset or null.
40185 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
40186 Internationalization Variables for the precedence of internationalization variables
40187 used to determine the values of locale categories.)

40188 LC_ALL If set to a non-empty string value, override the values of all the other
40189 internationalization variables.

40190 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40191 characters (for example, single-byte as opposed to multi-byte characters in
40192 arguments).

40193 LC_MESSAGES
40194 Determine the locale that should be used to affect the format and contents of
40195 diagnostic messages written to standard error.

40196 LC_TIME Determine the locale used for the format and contents of the date and time strings.

40197 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40198 TZ Determine the timezone used when writing date and time information. If TZ is
40199 unset or null, an unspecified default timezone shall be used.

40200 ASYNCHRONOUS EVENTS
40201 Default.

1048 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities who

40202 STDOUT
40203 The who utility shall write its default format to the standard output in an implementation-
40204 defined format, subject only to the requirement of containing the information described above.

40205 XSI OF XSI-conformant systems shall write the default information to the standard output in the
40206 following general format:

40207 <name>[<state>]<line><time>[<activity>][<pid>][<comment>][<exit>]

40208 The following format shall be used for the −T option:

40209 "%s %c %s %s\n" <name>, <terminal state>, <terminal name>,
40210 <time of login>

40211 where <terminal state> is one of the following characters:

40212 + The terminal allows write access to other users.

40213 − The terminal denies write access to other users.

40214 ? The terminal write-access state cannot be determined.

40215 In the POSIX locale, the <time of login> shall be equivalent in format to the output of:

40216 date +"%b %e %H:%M"

40217 If the −u option is used with −T, the idle time shall be added to the end of the previous format in
40218 an unspecified format.

40219 STDERR
40220 The standard error shall be used only for diagnostic messages.

40221 OUTPUT FILES
40222 None.

40223 EXTENDED DESCRIPTION
40224 None.

40225 EXIT STATUS
40226 The following exit values shall be returned:

40227 0 Successful completion.

40228 >0 An error occurred.

40229 CONSEQUENCES OF ERRORS
40230 Default.

40231 APPLICATION USAGE
40232 The name init used for the system process is the most commonly used on historical systems, but
40233 it may vary.

40234 The ‘‘domain of accessibility’’ referred to is a broad concept that permits interpretation either on
40235 a very secure basis or even to allow a network-wide implementation like the historical rwho .

40236 EXAMPLES
40237 None.

40238 RATIONALE
40239 Due to differences between historical implementations, the base options provided were a
40240 compromise to allow users to work with those functions. The standard developers also
40241 considered removing all the options, but felt that these options offered users valuable
40242 functionality. Additional options to match historical systems are available on XSI-conformant

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1049

who Utilities

40243 systems.

40244 It is recognized that the who command may be of limited usefulness, especially in a multi-level
40245 secure environment. The standard developers considered, however, that having some standard
40246 method of determining the ‘‘accessibility’’ of other users would aid user portability.

40247 No format was specified for the default who output for systems not supporting the XSI
40248 Extension. In such a user-oriented command, designed only for human use, this was not
40249 considered to be a deficiency.

40250 The format of the terminal name is unspecified, but the descriptions of ps, talk, and write require
40251 that they use the same format.

40252 It is acceptable for an implementation to produce no output for an invocation of who mil.

40253 FUTURE DIRECTIONS
40254 None.

40255 SEE ALSO
40256 mesg

40257 CHANGE HISTORY
40258 First released in Issue 2.

40259 Issue 6
40260 This utility is marked as part of the User Portability Utilities option.

40261 The TZ entry is added to the ENVIRONMENT VARIABLES section.

1050 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities write

40262 NAME
40263 write — write to another user

40264 SYNOPSIS
40265 UP write user_name [terminal]
40266

40267 DESCRIPTION
40268 The write utility shall read lines from the user’s standard input and write them to the terminal of
40269 another user. When first invoked, it shall write the message:

40270 Message from sender-login-id (sending-terminal) [date]...

40271 to user_name. When it has successfully completed the connection, the sender’s terminal shall be
40272 alerted twice to indicate that what the sender is typing is being written to the recipient’s
40273 terminal.

40274 If the recipient wants to reply, this can be accomplished by typing:

40275 write sender-login-id [sending-terminal]

40276 upon receipt of the initial message. Whenever a line of input as delimited by an NL, EOF, or EOL
40277 special character (see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 11, General
40278 Terminal Interface) is accumulated while in canonical input mode, the accumulated data shall be
40279 written on the other user’s terminal. Characters shall be processed as follows:

40280 • Typing <alert> shall write the alert character to the recipient’s terminal.

40281 • Typing the erase and kill characters shall affect the sender’s terminal in the manner described
40282 by the termios interface in the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 11,
40283 General Terminal Interface.

40284 • Typing the interrupt or end-of-file characters shall cause write to write an appropriate
40285 message ("EOT\n" in the POSIX locale) to the recipient’s terminal and exit.

40286 • Typing characters from LC_CTYPE classifications print or space shall cause those characters
40287 to be sent to the recipient’s terminal.

40288 • When and only when the stty iexten local mode is enabled, the existence and processing of
40289 additional special control characters and multi-byte or single-byte functions is
40290 implementation-defined.

40291 • Typing other non-printable characters shall cause implementation-defined sequences of
40292 printable characters to be written to the recipient’s terminal.

40293 To write to a user who is logged in more than once, the terminal argument can be used to indicate
40294 which terminal to write to; otherwise, the recipient’s terminal is selected in an implementation-
40295 defined manner and an informational message is written to the sender’s standard output,
40296 indicating which terminal was chosen.

40297 Permission to be a recipient of a write message can be denied or granted by use of the mesg
40298 utility. However, a user’s privilege may further constrain the domain of accessibility of other
40299 users’ terminals. The write utility shall fail when the user lacks the appropriate privileges to
40300 perform the requested action.

40301 OPTIONS
40302 None.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1051

write Utilities

40303 OPERANDS
40304 The following operands shall be supported:

40305 user_name Login name of the person to whom the message shall be written. The application
40306 shall ensure that this operand is of the form returned by the who utility.

40307 terminal Terminal identification in the same format provided by the who utility.

40308 STDIN
40309 Lines to be copied to the recipient’s terminal are read from standard input.

40310 INPUT FILES
40311 None.

40312 ENVIRONMENT VARIABLES
40313 The following environment variables shall affect the execution of write:

40314 LANG Provide a default value for the internationalization variables that are unset or null.
40315 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
40316 Internationalization Variables for the precedence of internationalization variables
40317 used to determine the values of locale categories.)

40318 LC_ALL If set to a non-empty string value, override the values of all the other
40319 internationalization variables.

40320 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40321 characters (for example, single-byte as opposed to multi-byte characters in
40322 arguments and input files). If the recipient’s locale does not use an LC_CTYPE
40323 equivalent to the sender’s, the results are undefined.

40324 LC_MESSAGES
40325 Determine the locale that should be used to affect the format and contents of
40326 diagnostic messages written to standard error and informative messages written to
40327 standard output.

40328 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40329 ASYNCHRONOUS EVENTS
40330 If an interrupt signal is received, write shall write an appropriate message on the recipient’s
40331 terminal and exit with a status of zero. It shall take the standard action for all other signals.

40332 STDOUT
40333 An informational message shall be written to standard output if a recipient is logged in more
40334 than once.

40335 STDERR
40336 The standard error shall be used only for diagnostic messages.

40337 OUTPUT FILES
40338 The recipient’s terminal is used for output.

40339 EXTENDED DESCRIPTION
40340 None.

40341 EXIT STATUS
40342 The following exit values shall be returned:

40343 0 Successful completion.

40344 >0 The addressed user is not logged on or the addressed user denies permission.

1052 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities write

40345 CONSEQUENCES OF ERRORS
40346 Default.

40347 APPLICATION USAGE
40348 The talk utility is considered by some users to be a more usable utility on full-screen terminals.

40349 EXAMPLES
40350 None.

40351 RATIONALE
40352 The write utility was included in this volume of IEEE Std 1003.1-2001 since it can be
40353 implemented on all terminal types. The standard developers considered the talk utility, which
40354 cannot be implemented on certain terminals, to be a ‘‘better’’ communications interface. Both of
40355 these programs are in widespread use on historical implementations. Therefore, the standard
40356 developers decided that both utilities should be specified.

40357 The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
40358 require that they all use or accept the same format.

40359 FUTURE DIRECTIONS
40360 None.

40361 SEE ALSO
40362 mesg, talk , who , the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 11, General
40363 Terminal Interface

40364 CHANGE HISTORY
40365 First released in Issue 2.

40366 Issue 5
40367 The FUTURE DIRECTIONS section is added.

40368 Issue 6
40369 This utility is marked as part of the User Portability Utilities option.

40370 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1053

xargs Utilities

40371 NAME
40372 xargs — construct argument lists and invoke utility

40373 SYNOPSIS
40374 XSI xargs [−t][−p]][−E eofstr][−I replstr][−L number][−n number [−x]]
40375 [−s size][utility [argument...]]

40376 DESCRIPTION
40377 The xargs utility shall construct a command line consisting of the utility and argument operands
40378 specified followed by as many arguments read in sequence from standard input as fit in length
40379 and number constraints specified by the options. The xargs utility shall then invoke the
40380 constructed command line and wait for its completion. This sequence shall be repeated until one
40381 of the following occurs:

40382 • An end-of-file condition is detected on standard input.

40383 • The logical end-of-file string (see the −E eofstr option) is found on standard input after
40384 double-quote processing, apostrophe processing, and backslash escape processing (see next
40385 paragraph).

40386 • An invocation of a constructed command line returns an exit status of 255.

40387 The application shall ensure that arguments in the standard input are separated by unquoted
40388 <blank>s, unescaped <blank>s, or <newline>s. A string of zero or more non-double-quote (’"’)
40389 characters and non-<newline>s can be quoted by enclosing them in double-quotes. A string of
40390 zero or more non-apostrophe (’’’) characters and non-<newline>s can be quoted by enclosing
40391 them in apostrophes. Any unquoted character can be escaped by preceding it with a backslash.
40392 The utility named by utility shall be executed one or more times until the end-of-file is reached
40393 or the logical end-of file string is found. The results are unspecified if the utility named by utility
40394 attempts to read from its standard input.

40395 The generated command line length shall be the sum of the size in bytes of the utility name and
40396 each argument treated as strings, including a null byte terminator for each of these strings. The
40397 xargs utility shall limit the command line length such that when the command line is invoked,
40398 the combined argument and environment lists (see the exec family of functions in the System
40399 Interfaces volume of IEEE Std 1003.1-2001) shall not exceed {ARG_MAX}−2 048 bytes. Within
40400 this constraint, if neither the −n nor the −s option is specified, the default command line length
40401 shall be at least {LINE_MAX}.

40402 OPTIONS
40403 The xargs utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
40404 12.2, Utility Syntax Guidelines.

40405 The following options shall be supported:

40406 −E eofstr Use eofstr as the logical end-of-file string. If −E is not specified, it is unspecified
40407 whether the logical end-of-file string is the underscore character (’_’) or the end-
40408 of-file string capability is disabled. When eofstr is the null string, the logical end-
40409 of-file string capability shall be disabled and underscore characters shall be taken
40410 literally.

40411 XSI −I replstr Insert mode: utility is executed for each line from standard input, taking the entire
40412 line as a single argument, inserting it in arguments for each occurrence of replstr. A
40413 maximum of five arguments in arguments can each contain one or more instances
40414 of replstr. Any <blank>s at the beginning of each line shall be ignored.
40415 Constructed arguments cannot grow larger than 255 bytes. Option −x shall be
40416 forced on.

1054 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities xargs

40417 XSI −L number The utility shall be executed for each non-empty number lines of arguments from
40418 standard input. The last invocation of utility shall be with fewer lines of arguments
40419 if fewer than number remain. A line is considered to end with the first <newline>
40420 unless the last character of the line is a <blank>; a trailing <blank> signals
40421 continuation to the next non-empty line, inclusive. The −L and −n options are
40422 mutually-exclusive; the last one specified shall take effect.

40423 −n number Invoke utility using as many standard input arguments as possible, up to number (a
40424 positive decimal integer) arguments maximum. Fewer arguments shall be used if:

40425 • The command line length accumulated exceeds the size specified by the −s
40426 option (or {LINE_MAX} if there is no −s option).

40427 • The last iteration has fewer than number, but not zero, operands remaining.

40428 −p Prompt mode: the user is asked whether to execute utility at each invocation. Trace
40429 mode (−t) is turned on to write the command instance to be executed, followed by
40430 a prompt to standard error. An affirmative response read from /dev/tty shall
40431 execute the command; otherwise, that particular invocation of utility shall be
40432 skipped.

40433 −s size Invoke utility using as many standard input arguments as possible yielding a
40434 command line length less than size (a positive decimal integer) bytes. Fewer
40435 arguments shall be used if:

40436 • The total number of arguments exceeds that specified by the −n option.

40437 XSI • The total number of lines exceeds that specified by the −L option.

40438 • End-of-file is encountered on standard input before size bytes are accumulated.

40439 Values of size up to at least {LINE_MAX} bytes shall be supported, provided that
40440 the constraints specified in the DESCRIPTION are met. It shall not be considered
40441 an error if a value larger than that supported by the implementation or exceeding
40442 the constraints specified in the DESCRIPTION is given; xargs shall use the largest
40443 value it supports within the constraints.

40444 −t Enable trace mode. Each generated command line shall be written to standard
40445 error just prior to invocation.

40446 −x Terminate if a command line containing number arguments (see the −n option
40447 XSI above) or number lines (see the −L option above) will not fit in the implied or
40448 specified size (see the −s option above).

40449 OPERANDS
40450 The following operands shall be supported:

40451 utility The name of the utility to be invoked, found by search path using the PATH
40452 environment variable, described in the Base Definitions volume of
40453 IEEE Std 1003.1-2001, Chapter 8, Environment Variables. If utility is omitted, the
40454 default shall be the echo utility. If the utility operand names any of the special
40455 built-in utilities in Section 2.14 (on page 64), the results are undefined.

40456 argument An initial option or operand for the invocation of utility .

40457 STDIN
40458 The standard input shall be a text file. The results are unspecified if an end-of-file condition is
40459 detected immediately following an escaped <newline>.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1055

xargs Utilities

40460 INPUT FILES
40461 The file /dev/tty shall be used to read responses required by the −p option.

40462 ENVIRONMENT VARIABLES
40463 The following environment variables shall affect the execution of xargs:

40464 LANG Provide a default value for the internationalization variables that are unset or null.
40465 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
40466 Internationalization Variables for the precedence of internationalization variables
40467 used to determine the values of locale categories.)

40468 LC_ALL If set to a non-empty string value, override the values of all the other
40469 internationalization variables.

40470 LC_COLLATE
40471 Determine the locale for the behavior of ranges, equivalence classes, and multi-
40472 character collating elements used in the extended regular expression defined for
40473 the yesexpr locale keyword in the LC_MESSAGES category.

40474 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40475 characters (for example, single-byte as opposed to multi-byte characters in
40476 arguments and input files) and the behavior of character classes used in the
40477 extended regular expression defined for the yesexpr locale keyword in the
40478 LC_MESSAGES category.

40479 LC_MESSAGES
40480 Determine the locale for the processing of affirmative responses and that should be
40481 used to affect the format and contents of diagnostic messages written to standard
40482 error.

40483 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40484 PATH Determine the location of utility , as described in the Base Definitions volume of
40485 IEEE Std 1003.1-2001, Chapter 8, Environment Variables.

40486 ASYNCHRONOUS EVENTS
40487 Default.

40488 STDOUT
40489 Not used.

40490 STDERR
40491 The standard error shall be used for diagnostic messages and the −t and −p options. If the −t
40492 option is specified, the utility and its constructed argument list shall be written to standard error,
40493 as it will be invoked, prior to invocation. If −p is specified, a prompt of the following format
40494 shall be written (in the POSIX locale):

40495 "?..."

40496 at the end of the line of the output from −t.

40497 OUTPUT FILES
40498 None.

40499 EXTENDED DESCRIPTION
40500 None.

1056 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities xargs

40501 EXIT STATUS
40502 The following exit values shall be returned:

40503 0 All invocations of utility returned exit status zero.

40504 1-125 A command line meeting the specified requirements could not be assembled, one or
40505 more of the invocations of utility returned a non-zero exit status, or some other error
40506 occurred.

40507 126 The utility specified by utility was found but could not be invoked.

40508 127 The utility specified by utility could not be found.

40509 CONSEQUENCES OF ERRORS
40510 If a command line meeting the specified requirements cannot be assembled, the utility cannot be
40511 invoked, an invocation of the utility is terminated by a signal, or an invocation of the utility exits
40512 with exit status 255, the xargs utility shall write a diagnostic message and exit without
40513 processing any remaining input.

40514 APPLICATION USAGE
40515 The 255 exit status allows a utility being used by xargs to tell xargs to terminate if it knows no
40516 further invocations using the current data stream will succeed. Thus, utility should explicitly exit
40517 with an appropriate value to avoid accidentally returning with 255.

40518 Note that input is parsed as lines; <blank>s separate arguments. If xargs is used to bundle output
40519 of commands like find dir −print or ls into commands to be executed, unexpected results are
40520 likely if any filenames contain any <blank>s or <newline>s. This can be fixed by using find to
40521 call a script that converts each file found into a quoted string that is then piped to xargs. Note
40522 that the quoting rules used by xargs are not the same as in the shell. They were not made
40523 consistent here because existing applications depend on the current rules and the shell syntax is
40524 not fully compatible with it. An easy rule that can be used to transform any string into a quoted
40525 form that xargs interprets correctly is to precede each character in the string with a backslash.

40526 On implementations with a large value for {ARG_MAX}, xargs may produce command lines
40527 longer than {LINE_MAX}. For invocation of utilities, this is not a problem. If xargs is being used
40528 to create a text file, users should explicitly set the maximum command line length with the −s
40529 option.

40530 The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
40531 an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
40532 utility exited with an error indication’’. The value 127 was chosen because it is not commonly
40533 used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
40534 values above 128 can be confused with termination due to receipt of a signal. The value 126 was
40535 chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
40536 scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
40537 between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
40538 exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
40539 any other reason.

40540 EXAMPLES

40541 1. The following command combines the output of the parenthesised commands onto one
40542 line, which is then written to the end-of-file log:

40543 (logname; date; printf "%s\n" "$0 $*") | xargs >>log

40544 2. The following command invokes diff with successive pairs of arguments originally typed
40545 as command line arguments (assuming there are no embedded <blank>s in the elements of
40546 the original argument list):

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1057

xargs Utilities

40547 printf "%s\n" "$*" | xargs −n 2 −x diff

40548 3. In the following commands, the user is asked which files in the current directory are to be
40549 archived. The files are archived into arch; a , one at a time, or b, many at a time.

40550 a. ls | xargs −p −L 1 ar −r arch

40551 b. ls | xargs −p −L 1 | xargs ar −r arch

40552 4. The following executes with successive pairs of arguments originally typed as command
40553 line arguments:

40554 echo $* | xargs −n 2 diff

40555 5. On XSI-conformant systems, the following moves all files from directory $1 to directory $2,
40556 and echoes each move command just before doing it:

40557 ls $1 | xargs −I {} −t mv $1/{} $2/{}

40558 RATIONALE
40559 The xargs utility was usually found only in System V-based systems; BSD systems included an
40560 apply utility that provided functionality similar to xargs −n number. The SVID lists xargs as a
40561 software development extension. This volume of IEEE Std 1003.1-2001 does not share the view
40562 that it is used only for development, and therefore it is not optional.

40563 The classic application of the xargs utility is in conjunction with the find utility to reduce the
40564 number of processes launched by a simplistic use of the find −exec combination. The xargs utility
40565 is also used to enforce an upper limit on memory required to launch a process. With this basis in
40566 mind, this volume of IEEE Std 1003.1-2001 selected only the minimal features required.

40567 Although the 255 exit status is mostly an accident of historical implementations, it allows a
40568 utility being used by xargs to tell xargs to terminate if it knows no further invocations using the
40569 current data stream shall succeed. Any non-zero exit status from a utility falls into the 1-125
40570 range when xargs exits. There is no statement of how the various non-zero utility exit status
40571 codes are accumulated by xargs. The value could be the addition of all codes, their highest
40572 value, the last one received, or a single value such as 1. Since no algorithm is arguably better
40573 than the others, and since many of the standard utilities say little more (portably) than
40574 ‘‘pass/fail’’, no new algorithm was invented.

40575 Several other xargs options were withdrawn because simple alternatives already exist within this
40576 volume of IEEE Std 1003.1-2001. For example, the −i replstr option can be just as efficiently
40577 performed using a shell for loop. Since xargs calls an exec function with each input line, the −i
40578 option does not usually exploit the grouping capabilities of xargs.

40579 The requirement that xargs never produces command lines such that invocation of utility is
40580 within 2 048 bytes of hitting the POSIX exec {ARG_MAX} limitations is intended to guarantee
40581 that the invoked utility has room to modify its environment variables and command line
40582 arguments and still be able to invoke another utility. Note that the minimum {ARG_MAX}
40583 allowed by the System Interfaces volume of IEEE Std 1003.1-2001 is 4 096 bytes and the
40584 minimum value allowed by this volume of IEEE Std 1003.1-2001 is 2 048 bytes; therefore, the
40585 2 048 bytes difference seems reasonable. Note, however, that xargs may never be able to invoke a
40586 utility if the environment passed in to xargs comes close to using {ARG_MAX} bytes.

40587 The version of xargs required by this volume of IEEE Std 1003.1-2001 is required to wait for the
40588 completion of the invoked command before invoking another command. This was done because
40589 historical scripts using xargs assumed sequential execution. Implementations wanting to provide
40590 parallel operation of the invoked utilities are encouraged to add an option enabling parallel
40591 invocation, but should still wait for termination of all of the children before xargs terminates
40592 normally.

1058 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities xargs

40593 The −e option was omitted from the ISO POSIX-2: 1993 standard in the belief that the eofstr
40594 option-argument was recognized only when it was on a line by itself and before quote and
40595 escape processing were performed, and that the logical end-of-file processing was only enabled
40596 if a −e option was specified. In that case, a simple sed script could be used to duplicate the −e
40597 functionality. Further investigation revealed that:

40598 • The logical end-of-file string was checked for after quote and escape processing, making a sed
40599 script that provided equivalent functionality much more difficult to write.

40600 • The default was to perform logical end-of-file processing with an underscore as the logical
40601 end-of-file string.

40602 To correct this misunderstanding, the −E eofstr option was adopted from the X/Open Portability
40603 Guide. Users should note that the description of the −E option matches historical documentation
40604 of the −e option (which was not adopted because it did not support the Utility Syntax
40605 Guidelines), by saying that if eofstr is the null string, logical end-of-file processing is disabled.
40606 Historical implementations of xargs actually did not disable logical end-of-file processing; they
40607 treated a null argument found in the input as a logical end-of-file string. (A null string argument
40608 could be generated using single or double quotes (’’ or ""). Since this behavior was not
40609 documented historically, it is considered to be a bug.

40610 FUTURE DIRECTIONS
40611 None.

40612 SEE ALSO
40613 Chapter 2 (on page 29), echo , find , the System Interfaces volume of IEEE Std 1003.1-2001, exec

40614 CHANGE HISTORY
40615 First released in Issue 2.

40616 Issue 5
40617 A second FUTURE DIRECTION is added.

40618 Issue 6
40619 The obsolescent −e, −i, and −l options are removed.

40620 The following new requirements on POSIX implementations derive from alignment with the
40621 Single UNIX Specification:

40622 • The −p option is added.

40623 • In the INPUT FILES section, the file /dev/tty is used to read responses required by the −p
40624 option.

40625 • The STDERR section is updated to describe the −p option.

40626 The description of the −E option is aligned with the ISO POSIX-2: 1993 standard.

40627 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1059

yacc Utilities

40628 NAME
40629 yacc — yet another compiler compiler (DEVELOPMENT)

40630 SYNOPSIS
40631 CD yacc [−dltv][−b file_prefix][−p sym_prefix] grammar
40632

40633 DESCRIPTION
40634 The yacc utility shall read a description of a context-free grammar in grammar and write C source
40635 code, conforming to the ISO C standard, to a code file, and optionally header information into a
40636 header file, in the current directory. The C code shall define a function and related routines and
40637 macros for an automaton that executes a parsing algorithm meeting the requirements in
40638 Algorithms (on page 1071).

40639 The form and meaning of the grammar are described in the EXTENDED DESCRIPTION section.

40640 The C source code and header file shall be produced in a form suitable as input for the C
40641 compiler (see c99).

40642 OPTIONS
40643 The yacc utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section
40644 12.2, Utility Syntax Guidelines.

40645 The following options shall be supported:

40646 −b file_prefix Use file_prefix instead of y as the prefix for all output filenames. The code file
40647 y.tab.c, the header file y.tab.h (created when −d is specified), and the description
40648 file y.output (created when −v is specified), shall be changed to file_prefix .tab.c,
40649 file_prefix .tab.h, and file_prefix .output, respectively.

40650 −d Write the header file; by default only the code file is written. The #define
40651 statements associate the token codes assigned by yacc with the user-declared token
40652 names. This allows source files other than y.tab.c to access the token codes.

40653 −l Produce a code file that does not contain any #line constructs. If this option is not
40654 present, it is unspecified whether the code file or header file contains #line
40655 directives. This should only be used after the grammar and the associated actions
40656 are fully debugged.

40657 −p sym_prefix
40658 Use sym_prefix instead of yy as the prefix for all external names produced by yacc.
40659 The names affected shall include the functions yyparse(), yylex(), and yyerror(),
40660 and the variables yylval , yychar , and yydebug. (In the remainder of this section, the
40661 six symbols cited are referenced using their default names only as a notational
40662 convenience.) Local names may also be affected by the −p option; however, the −p
40663 option shall not affect #define symbols generated by yacc.

40664 −t Modify conditional compilation directives to permit compilation of debugging
40665 code in the code file. Runtime debugging statements shall always be contained in
40666 the code file, but by default conditional compilation directives prevent their
40667 compilation.

40668 −v Write a file containing a description of the parser and a report of conflicts
40669 generated by ambiguities in the grammar.

1060 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

40670 OPERANDS
40671 The following operand is required:

40672 grammar A pathname of a file containing instructions, hereafter called grammar, for which a
40673 parser is to be created. The format for the grammar is described in the EXTENDED
40674 DESCRIPTION section.

40675 STDIN
40676 Not used.

40677 INPUT FILES
40678 The file grammar shall be a text file formatted as specified in the EXTENDED DESCRIPTION
40679 section.

40680 ENVIRONMENT VARIABLES
40681 The following environment variables shall affect the execution of yacc:

40682 LANG Provide a default value for the internationalization variables that are unset or null.
40683 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
40684 Internationalization Variables for the precedence of internationalization variables
40685 used to determine the values of locale categories.)

40686 LC_ALL If set to a non-empty string value, override the values of all the other
40687 internationalization variables.

40688 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
40689 characters (for example, single-byte as opposed to multi-byte characters in
40690 arguments and input files).

40691 LC_MESSAGES
40692 Determine the locale that should be used to affect the format and contents of
40693 diagnostic messages written to standard error.

40694 XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

40695 The LANG and LC_* variables affect the execution of the yacc utility as stated. The main()
40696 function defined in Yacc Library (on page 1071) shall call:

40697 setlocale(LC_ALL, "")

40698 and thus the program generated by yacc shall also be affected by the contents of these variables
40699 at runtime.

40700 ASYNCHRONOUS EVENTS
40701 Default.

40702 STDOUT
40703 Not used.

40704 STDERR
40705 If shift/reduce or reduce/reduce conflicts are detected in grammar, yacc shall write a report of
40706 those conflicts to the standard error in an unspecified format.

40707 Standard error shall also be used for diagnostic messages.

40708 OUTPUT FILES
40709 The code file, the header file, and the description file shall be text files. All are described in the
40710 following sections.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1061

yacc Utilities

40711 Code File

40712 This file shall contain the C source code for the yyparse() function. It shall contain code for the
40713 various semantic actions with macro substitution performed on them as described in the
40714 EXTENDED DESCRIPTION section. It also shall contain a copy of the #define statements in the
40715 header file. If a %union declaration is used, the declaration for YYSTYPE shall also be included
40716 in this file.

40717 Header File

40718 The header file shall contain #define statements that associate the token numbers with the token
40719 names. This allows source files other than the code file to access the token codes. If a %union
40720 declaration is used, the declaration for YYSTYPE and an extern YYSTYPE yylval declaration shall
40721 also be included in this file.

40722 Description File

40723 The description file shall be a text file containing a description of the state machine
40724 corresponding to the parser, using an unspecified format. Limits for internal tables (see Limits
40725 (on page 1072)) shall also be reported, in an implementation-defined manner. (Some
40726 implementations may use dynamic allocation techniques and have no specific limit values to
40727 report.)

40728 EXTENDED DESCRIPTION
40729 The yacc command accepts a language that is used to define a grammar for a target language to
40730 be parsed by the tables and code generated by yacc. The language accepted by yacc as a
40731 grammar for the target language is described below using the yacc input language itself.

40732 The input grammar includes rules describing the input structure of the target language and code
40733 to be invoked when these rules are recognized to provide the associated semantic action. The
40734 code to be executed shall appear as bodies of text that are intended to be C-language code. The
40735 C-language inclusions are presumed to form a correct function when processed by yacc into its
40736 output files. The code included in this way shall be executed during the recognition of the target
40737 language.

40738 Given a grammar, the yacc utility generates the files described in the OUTPUT FILES section.
40739 The code file can be compiled and linked using c99. If the declaration and programs sections of
40740 the grammar file did not include definitions of main(), yylex(), and yyerror(), the compiled
40741 output requires linking with externally supplied versions of those functions. Default versions of
40742 main() and yyerror() are supplied in the yacc library and can be linked in by using the −l y
40743 operand to c99. The yacc library interfaces need not support interfaces with other than the
40744 default yy symbol prefix. The application provides the lexical analyzer function, yylex(); the lex
40745 utility is specifically designed to generate such a routine.

40746 Input Language

40747 The application shall ensure that every specification file consists of three sections in order:
40748 declarations , grammar rules, and programs , separated by double percent signs ("%%"). The
40749 declarations and programs sections can be empty. If the latter is empty, the preceding "%%"
40750 mark separating it from the rules section can be omitted.

40751 The input is free form text following the structure of the grammar defined below.

1062 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

40752 Lexical Structure of the Grammar

40753 The <blank>s, <newline>s, and <form-feed>s shall be ignored, except that the application shall
40754 ensure that they do not appear in names or multi-character reserved symbols. Comments shall
40755 be enclosed in "/* ... */", and can appear wherever a name is valid.

40756 Names are of arbitrary length, made up of letters, periods (’.’), underscores (’_’), and non-
40757 initial digits. Uppercase and lowercase letters are distinct. Conforming applications shall not
40758 use names beginning in yy or YY since the yacc parser uses such names. Many of the names
40759 appear in the final output of yacc, and thus they should be chosen to conform with any
40760 additional rules created by the C compiler to be used. In particular they appear in #define
40761 statements.

40762 A literal shall consist of a single character enclosed in single-quotes (’’’). All of the escape
40763 sequences supported for character constants by the ISO C standard shall be supported by yacc.

40764 The relationship with the lexical analyzer is discussed in detail below.

40765 The application shall ensure that the NUL character is not used in grammar rules or literals.

40766 Declarations Section

40767 The declarations section is used to define the symbols used to define the target language and
40768 their relationship with each other. In particular, much of the additional information required to
40769 resolve ambiguities in the context-free grammar for the target language is provided here.

40770 Usually yacc assigns the relationship between the symbolic names it generates and their
40771 underlying numeric value. The declarations section makes it possible to control the assignment
40772 of these values.

40773 It is also possible to keep semantic information associated with the tokens currently on the parse
40774 stack in a user-defined C-language union, if the members of the union are associated with the
40775 various names in the grammar. The declarations section provides for this as well.

40776 The first group of declarators below all take a list of names as arguments. That list can optionally
40777 be preceded by the name of a C union member (called a tag below) appearing within ’<’ and
40778 ’>’. (As an exception to the typographical conventions of the rest of this volume of
40779 IEEE Std 1003.1-2001, in this case <tag> does not represent a metavariable, but the literal angle
40780 bracket characters surrounding a symbol.) The use of tag specifies that the tokens named on this
40781 line shall be of the same C type as the union member referenced by tag . This is discussed in
40782 more detail below.

40783 For lists used to define tokens, the first appearance of a given token can be followed by a
40784 positive integer (as a string of decimal digits). If this is done, the underlying value assigned to it
40785 for lexical purposes shall be taken to be that number.

40786 The following declares name to be a token:

40787 token [<tag>] name [number][name [number]]...

40788 If tag is present, the C type for all tokens on this line shall be declared to be the type referenced
40789 by tag . If a positive integer, number, follows a name, that value shall be assigned to the token.

40790 The following declares name to be a token, and assigns precedence to it:

40791 %left [<tag>] name [number][name [number]]...
40792 %right [<tag>] name [number][name [number]]...

40793 One or more lines, each beginning with one of these symbols, can appear in this section. All
40794 tokens on the same line have the same precedence level and associativity; the lines are in order

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1063

yacc Utilities

40795 of increasing precedence or binding strength. %left denotes that the operators on that line are
40796 left associative, and %right similarly denotes right associative operators. If tag is present, it shall
40797 declare a C type for names as described for %token.

40798 The following declares name to be a token, and indicates that this cannot be used associatively:

40799 %nonassoc [<tag>] name [number][name [number]]...

40800 If the parser encounters associative use of this token it reports an error. If tag is present, it shall
40801 declare a C type for names as described for %token.

40802 The following declares that union member names are non-terminals, and thus it is required to
40803 have a tag field at its beginning:

40804 %type <tag> name...

40805 Because it deals with non-terminals only, assigning a token number or using a literal is also
40806 prohibited. If this construct is present, yacc shall perform type checking; if this construct is not
40807 present, the parse stack shall hold only the int type.

40808 Every name used in grammar not defined by a %token, %left, %right, or %nonassoc declaration
40809 is assumed to represent a non-terminal symbol. The yacc utility shall report an error for any
40810 non-terminal symbol that does not appear on the left side of at least one grammar rule.

40811 Once the type, precedence, or token number of a name is specified, it shall not be changed. If the
40812 first declaration of a token does not assign a token number, yacc shall assign a token number.
40813 Once this assignment is made, the token number shall not be changed by explicit assignment.

40814 The following declarators do not follow the previous pattern.

40815 The following declares the non-terminal name to be the start symbol , which represents the largest,
40816 most general structure described by the grammar rules:

40817 %start name

40818 By default, it is the left-hand side of the first grammar rule; this default can be overridden with
40819 this declaration.

40820 The following declares the yacc value stack to be a union of the various types of values desired:

40821 %union { body of union (in C) }

40822 By default, the values returned by actions (see below) and the lexical analyzer shall be of type
40823 int. The yacc utility keeps track of types, and it shall insert corresponding union member names
40824 in order to perform strict type checking of the resulting parser.

40825 Alternatively, given that at least one <tag> construct is used, the union can be declared in a
40826 header file (which shall be included in the declarations section by using a #include construct
40827 within %{ and %}), and a typedef used to define the symbol YYSTYPE to represent this union.
40828 The effect of %union is to provide the declaration of YYSTYPE directly from the yacc input.

40829 C-language declarations and definitions can appear in the declarations section, enclosed by the
40830 following marks:

40831 %{ ... %}

40832 These statements shall be copied into the code file, and have global scope within it so that they
40833 can be used in the rules and program sections.

40834 The application shall ensure that the declarations section is terminated by the token %%.

1064 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

40835 Grammar Rules in yacc

40836 The rules section defines the context-free grammar to be accepted by the function yacc generates,
40837 and associates with those rules C-language actions and additional precedence information. The
40838 grammar is described below, and a formal definition follows.

40839 The rules section is comprised of one or more grammar rules. A grammar rule has the form:

40840 A : BODY ;

40841 The symbol A represents a non-terminal name, and BODY represents a sequence of zero or
40842 more names, literals, and semantic actions that can then be followed by optional precedence rules.
40843 Only the names and literals participate in the formation of the grammar; the semantic actions
40844 and precedence rules are used in other ways. The colon and the semicolon are yacc punctuation.
40845 If there are several successive grammar rules with the same left-hand side, the vertical bar ’|’
40846 can be used to avoid rewriting the left-hand side; in this case the semicolon appears only after
40847 the last rule. The BODY part can be empty (or empty of names and literals) to indicate that the
40848 non-terminal symbol matches the empty string.

40849 The yacc utility assigns a unique number to each rule. Rules using the vertical bar notation are
40850 distinct rules. The number assigned to the rule appears in the description file.

40851 The elements comprising a BODY are:

40852 name, literal These form the rules of the grammar: name is either a token or a non-terminal ; literal
40853 stands for itself (less the lexically required quotation marks).

40854 semantic action
40855 With each grammar rule, the user can associate actions to be performed each time
40856 the rule is recognized in the input process. (Note that the word ‘‘action’’ can also
40857 refer to the actions of the parser—shift, reduce, and so on.)

40858 These actions can return values and can obtain the values returned by previous
40859 actions. These values are kept in objects of type YYSTYPE (see %union). The
40860 result value of the action shall be kept on the parse stack with the left-hand side of
40861 the rule, to be accessed by other reductions as part of their right-hand side. By
40862 using the <tag> information provided in the declarations section, the code
40863 generated by yacc can be strictly type checked and contain arbitrary information. In
40864 addition, the lexical analyzer can provide the same kinds of values for tokens, if
40865 desired.

40866 An action is an arbitrary C statement and as such can do input or output, call
40867 subprograms, and alter external variables. An action is one or more C statements
40868 enclosed in curly braces ’{’ and ’}’.

40869 Certain pseudo-variables can be used in the action. These are macros for access to
40870 data structures known internally to yacc.

40871 $$ The value of the action can be set by assigning it to $$. If type
40872 checking is enabled and the type of the value to be assigned cannot
40873 be determined, a diagnostic message may be generated.

40874 $number This refers to the value returned by the component specified by the
40875 token number in the right side of a rule, reading from left to right;
40876 number can be zero or negative. If number is zero or negative, it refers
40877 to the data associated with the name on the parser’s stack preceding
40878 the leftmost symbol of the current rule. (That is, "$0" refers to the
40879 name immediately preceding the leftmost name in the current rule to
40880 be found on the parser’s stack and "$−1" refers to the symbol to its

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1065

yacc Utilities

40881 left.) If number refers to an element past the current point in the rule,
40882 or beyond the bottom of the stack, the result is undefined. If type
40883 checking is enabled and the type of the value to be assigned cannot
40884 be determined, a diagnostic message may be generated.

40885 $<tag>number
40886 These correspond exactly to the corresponding symbols without the
40887 tag inclusion, but allow for strict type checking (and preclude
40888 unwanted type conversions). The effect is that the macro is expanded
40889 to use tag to select an element from the YYSTYPE union (using
40890 dataname.tag). This is particularly useful if number is not positive.

40891 $<tag>$ This imposes on the reference the type of the union member
40892 referenced by tag . This construction is applicable when a reference
40893 to a left context value occurs in the grammar, and provides yacc with
40894 a means for selecting a type.

40895 Actions can occur anywhere in a rule (not just at the end); an action can access
40896 values returned by actions to its left, and in turn the value it returns can be
40897 accessed by actions to its right. An action appearing in the middle of a rule shall be
40898 equivalent to replacing the action with a new non-terminal symbol and adding an
40899 empty rule with that non-terminal symbol on the left-hand side. The semantic
40900 action associated with the new rule shall be equivalent to the original action. The
40901 use of actions within rules might introduce conflicts that would not otherwise
40902 exist.

40903 By default, the value of a rule shall be the value of the first element in it. If the first
40904 element does not have a type (particularly in the case of a literal) and type
40905 checking is turned on by %type, an error message shall result.

40906 precedence The keyword %prec can be used to change the precedence level associated with a
40907 particular grammar rule. Examples of this are in cases where a unary and binary
40908 operator have the same symbolic representation, but need to be given different
40909 precedences, or where the handling of an ambiguous if-else construction is
40910 necessary. The reserved symbol %prec can appear immediately after the body of
40911 the grammar rule and can be followed by a token name or a literal. It shall cause
40912 the precedence of the grammar rule to become that of the following token name or
40913 literal. The action for the rule as a whole can follow %prec.

40914 If a program section follows, the application shall ensure that the grammar rules are terminated
40915 by %%.

40916 Programs Section

40917 The programs section can include the definition of the lexical analyzer yylex(), and any other
40918 functions; for example, those used in the actions specified in the grammar rules. It is unspecified
40919 whether the programs section precedes or follows the semantic actions in the output file;
40920 therefore, if the application contains any macro definitions and declarations intended to apply to
40921 the code in the semantic actions, it shall place them within "%{ ... %}" in the declarations
40922 section.

1066 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

40923 Input Grammar

40924 The following input to yacc yields a parser for the input to yacc. This formal syntax takes
40925 precedence over the preceding text syntax description.

40926 The lexical structure is defined less precisely; Lexical Structure of the Grammar (on page 1063)
40927 defines most terms. The correspondence between the previous terms and the tokens below is as
40928 follows.

40929 IDENTIFIER This corresponds to the concept of name, given previously. It also includes
40930 literals as defined previously.

40931 C_IDENTIFIER This is a name, and additionally it is known to be followed by a colon. A literal
40932 cannot yield this token.

40933 NUMBER A string of digits (a non-negative decimal integer).

40934 TYPE, LEFT, MARK, LCURL, RCURL
40935 These correspond directly to %type, %left, %%, %{, and %}.

40936 { . . . } This indicates C-language source code, with the possible inclusion of ’$’
40937 macros as discussed previously.

40938 /* Grammar for the input to yacc. */
40939 /* Basic entries. */
40940 /* The following are recognized by the lexical analyzer. */

40941 %token IDENTIFIER /* Includes identifiers and literals */
40942 %token C_IDENTIFIER /* identifier (but not literal)
40943 followed by a :. */
40944 %token NUMBER /* [0-9][0-9]* */

40945 /* Reserved words : %type=>TYPE %left=>LEFT, and so on */

40946 %token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

40947 %token MARK /* The %% mark. */
40948 %token LCURL /* The %{ mark. */
40949 %token RCURL /* The %} mark. */

40950 /* 8-bit character literals stand for themselves; */
40951 /* tokens have to be defined for multi-byte characters. */

40952 %start spec

40953 %%

40954 spec : defs MARK rules tail
40955 ;
40956 tail : MARK
40957 {
40958 /* In this action, set up the rest of the file. */
40959 }
40960 | /* Empty; the second MARK is optional. */
40961 ;
40962 defs : /* Empty. */
40963 | defs def
40964 ;
40965 def : START IDENTIFIER
40966 | UNION

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1067

yacc Utilities

40967 {
40968 /* Copy union definition to output. */
40969 }
40970 | LCURL
40971 {
40972 /* Copy C code to output file. */
40973 }
40974 RCURL
40975 | rword tag nlist
40976 ;
40977 rword : TOKEN
40978 | LEFT
40979 | RIGHT
40980 | NONASSOC
40981 | TYPE
40982 ;
40983 tag : /* Empty: union tag ID optional. */
40984 | ’<’ IDENTIFIER ’>’
40985 ;
40986 nlist : nmno
40987 | nlist nmno
40988 ;
40989 nmno : IDENTIFIER /* Note: literal invalid with % type. */
40990 | IDENTIFIER NUMBER /* Note: invalid with % type. */
40991 ;

40992 /* Rule section */

40993 rules : C_IDENTIFIER rbody prec
40994 | rules rule
40995 ;
40996 rule : C_IDENTIFIER rbody prec
40997 | ’|’ rbody prec
40998 ;
40999 rbody : /* empty */
41000 | rbody IDENTIFIER
41001 | rbody act
41002 ;
41003 act : ’{’
41004 {
41005 /* Copy action, translate $$, and so on. */
41006 }
41007 ’}’
41008 ;
41009 prec : /* Empty */
41010 | PREC IDENTIFIER
41011 | PREC IDENTIFIER act
41012 | prec ’;’
41013 ;

1068 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

41014 Conflicts

41015 The parser produced for an input grammar may contain states in which conflicts occur. The
41016 conflicts occur because the grammar is not LALR(1). An ambiguous grammar always contains at
41017 least one LALR(1) conflict. The yacc utility shall resolve all conflicts, using either default rules or
41018 user-specified precedence rules.

41019 Conflicts are either shift/reduce conflicts or reduce/reduce conflicts. A shift/reduce conflict is
41020 where, for a given state and lookahead symbol, both a shift action and a reduce action are
41021 possible. A reduce/reduce conflict is where, for a given state and lookahead symbol, reductions
41022 by two different rules are possible.

41023 The rules below describe how to specify what actions to take when a conflict occurs. Not all
41024 shift/reduce conflicts can be successfully resolved this way because the conflict may be due to
41025 something other than ambiguity, so incautious use of these facilities can cause the language
41026 accepted by the parser to be much different from that which was intended. The description file
41027 shall contain sufficient information to understand the cause of the conflict. Where ambiguity is
41028 the reason either the default or explicit rules should be adequate to produce a working parser.

41029 The declared precedences and associativities (see Declarations Section (on page 1063)) are used
41030 to resolve parsing conflicts as follows:

41031 1. A precedence and associativity is associated with each grammar rule; it is the precedence
41032 and associativity of the last token or literal in the body of the rule. If the %prec keyword is
41033 used, it overrides this default. Some grammar rules might not have both precedence and
41034 associativity.

41035 2. If there is a shift/reduce conflict, and both the grammar rule and the input symbol have
41036 precedence and associativity associated with them, then the conflict is resolved in favor of
41037 the action (shift or reduce) associated with the higher precedence. If the precedences are
41038 the same, then the associativity is used; left associative implies reduce, right associative
41039 implies shift, and non-associative implies an error in the string being parsed.

41040 3. When there is a shift/reduce conflict that cannot be resolved by rule 2, the shift is done.
41041 Conflicts resolved this way are counted in the diagnostic output described in Error
41042 Handling.

41043 4. When there is a reduce/reduce conflict, a reduction is done by the grammar rule that
41044 occurs earlier in the input sequence. Conflicts resolved this way are counted in the
41045 diagnostic output described in Error Handling.

41046 Conflicts resolved by precedence or associativity shall not be counted in the shift/reduce and
41047 reduce/reduce conflicts reported by yacc on either standard error or in the description file.

41048 Error Handling

41049 The token error shall be reserved for error handling. The name error can be used in grammar
41050 rules. It indicates places where the parser can recover from a syntax error. The default value of
41051 error shall be 256. Its value can be changed using a %token declaration. The lexical analyzer
41052 should not return the value of error.

41053 The parser shall detect a syntax error when it is in a state where the action associated with the
41054 lookahead symbol is error. A semantic action can cause the parser to initiate error handling by
41055 executing the macro YYERROR. When YYERROR is executed, the semantic action passes
41056 control back to the parser. YYERROR cannot be used outside of semantic actions.

41057 When the parser detects a syntax error, it normally calls yyerror() with the character string
41058 "syntax error" as its argument. The call shall not be made if the parser is still recovering

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1069

yacc Utilities

41059 from a previous error when the error is detected. The parser is considered to be recovering from
41060 a previous error until the parser has shifted over at least three normal input symbols since the
41061 last error was detected or a semantic action has executed the macro yyerrok . The parser shall not
41062 call yyerror() when YYERROR is executed.

41063 The macro function YYRECOVERING shall return 1 if a syntax error has been detected and the
41064 parser has not yet fully recovered from it. Otherwise, zero shall be returned.

41065 When a syntax error is detected by the parser, the parser shall check if a previous syntax error
41066 has been detected. If a previous error was detected, and if no normal input symbols have been
41067 shifted since the preceding error was detected, the parser checks if the lookahead symbol is an
41068 endmarker (see Interface to the Lexical Analyzer). If it is, the parser shall return with a non-
41069 zero value. Otherwise, the lookahead symbol shall be discarded and normal parsing shall
41070 resume.

41071 When YYERROR is executed or when the parser detects a syntax error and no previous error has
41072 been detected, or at least one normal input symbol has been shifted since the previous error was
41073 detected, the parser shall pop back one state at a time until the parse stack is empty or the
41074 current state allows a shift over error. If the parser empties the parse stack, it shall return with a
41075 non-zero value. Otherwise, it shall shift over error and then resume normal parsing. If the parser
41076 reads a lookahead symbol before the error was detected, that symbol shall still be the lookahead
41077 symbol when parsing is resumed.

41078 The macro yyerrok in a semantic action shall cause the parser to act as if it has fully recovered
41079 from any previous errors. The macro yyclearin shall cause the parser to discard the current
41080 lookahead token. If the current lookahead token has not yet been read, yyclearin shall have no
41081 effect.

41082 The macro YYACCEPT shall cause the parser to return with the value zero. The macro
41083 YYABORT shall cause the parser to return with a non-zero value.

41084 Interface to the Lexical Analyzer

41085 The yylex() function is an integer-valued function that returns a token number representing the
41086 kind of token read. If there is a value associated with the token returned by yylex() (see the
41087 discussion of tag above), it shall be assigned to the external variable yylval .

41088 If the parser and yylex() do not agree on these token numbers, reliable communication between
41089 them cannot occur. For (single-byte character) literals, the token is simply the numeric value of
41090 the character in the current character set. The numbers for other tokens can either be chosen by
41091 yacc, or chosen by the user. In either case, the #define construct of C is used to allow yylex() to
41092 return these numbers symbolically. The #define statements are put into the code file, and the
41093 header file if that file is requested. The set of characters permitted by yacc in an identifier is larger
41094 than that permitted by C. Token names found to contain such characters shall not be included in
41095 the #define declarations.

41096 If the token numbers are chosen by yacc, the tokens other than literals shall be assigned numbers
41097 greater than 256, although no order is implied. A token can be explicitly assigned a number by
41098 following its first appearance in the declarations section with a number. Names and literals not
41099 defined this way retain their default definition. All token numbers assigned by yacc shall be
41100 unique and distinct from the token numbers used for literals and user-assigned tokens. If
41101 duplicate token numbers cause conflicts in parser generation, yacc shall report an error;
41102 otherwise, it is unspecified whether the token assignment is accepted or an error is reported.

41103 The end of the input is marked by a special token called the endmarker, which has a token
41104 number that is zero or negative. (These values are invalid for any other token.) All lexical
41105 analyzers shall return zero or negative as a token number upon reaching the end of their input. If

1070 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

41106 the tokens up to, but excluding, the endmarker form a structure that matches the start symbol,
41107 the parser shall accept the input. If the endmarker is seen in any other context, it shall be
41108 considered an error.

41109 Completing the Program

41110 In addition to yyparse() and yylex(), the functions yyerror() and main() are required to make a
41111 complete program. The application can supply main() and yyerror(), or those routines can be
41112 obtained from the yacc library.

41113 Yacc Library

41114 The following functions shall appear only in the yacc library accessible through the −l y operand
41115 to c99; they can therefore be redefined by a conforming application:

41116 int main(void)
41117 This function shall call yyparse() and exit with an unspecified value. Other actions within
41118 this function are unspecified.

41119 int yyerror(const char *s)
41120 This function shall write the NUL-terminated argument to standard error, followed by a
41121 <newline>.

41122 The order of the −l y and −l l operands given to c99 is significant; the application shall either
41123 provide its own main() function or ensure that −l y precedes −l l.

41124 Debugging the Parser

41125 The parser generated by yacc shall have diagnostic facilities in it that can be optionally enabled
41126 at either compile time or at runtime (if enabled at compile time). The compilation of the runtime
41127 debugging code is under the control of YYDEBUG, a preprocessor symbol. If YYDEBUG has a
41128 non-zero value, the debugging code shall be included. If its value is zero, the code shall not be
41129 included.

41130 In parsers where the debugging code has been included, the external int yydebug can be used to
41131 turn debugging on (with a non-zero value) and off (zero value) at runtime. The initial value of
41132 yydebug shall be zero.

41133 When −t is specified, the code file shall be built such that, if YYDEBUG is not already defined at
41134 compilation time (using the c99 −D YYDEBUG option, for example), YYDEBUG shall be set
41135 explicitly to 1. When −t is not specified, the code file shall be built such that, if YYDEBUG is not
41136 already defined, it shall be set explicitly to zero.

41137 The format of the debugging output is unspecified but includes at least enough information to
41138 determine the shift and reduce actions, and the input symbols. It also provides information
41139 about error recovery.

41140 Algorithms

41141 The parser constructed by yacc implements an LALR(1) parsing algorithm as documented in the
41142 literature. It is unspecified whether the parser is table-driven or direct-coded.

41143 A parser generated by yacc shall never request an input symbol from yylex() while in a state
41144 where the only actions other than the error action are reductions by a single rule.

41145 The literature of parsing theory defines these concepts.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1071

yacc Utilities

41146 Limits

41147 The yacc utility may have several internal tables. The minimum maximums for these tables are
41148 shown in the following table. The exact meaning of these values is implementation-defined. The
41149 implementation shall define the relationship between these values and between them and any
41150 error messages that the implementation may generate should it run out of space for any internal
41151 structure. An implementation may combine groups of these resources into a single pool as long
41152 as the total available to the user does not fall below the sum of the sizes specified by this section.

41153 Table 4-22 Internal Limits in yacc
__

41154 Minimum
41155 Limit Maximum Description__
41156 {NTERMS} 126 Number of tokens.
41157 {NNONTERM} 200 Number of non-terminals.
41158 {NPROD} 300 Number of rules.
41159 {NSTATES} 600 Number of states.
41160 Length of rules. The total length, in names
41161 (tokens and non-terminals), of all the rules of the
41162 grammar. The left-hand side is counted for each
41163 rule, even if it is not explicitly repeated, as
41164 specified in Grammar Rules in yacc (on page
41165 1065).

{MEMSIZE} 5 200

41166 Number of actions. ‘‘Actions’’ here (and in the
41167 description file) refer to parser actions (shift,
41168 reduce, and so on) not to semantic actions
41169 defined in Grammar Rules in yacc (on page
41170 1065).

{ACTSIZE} 4 000

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

41171 EXIT STATUS
41172 The following exit values shall be returned:

41173 0 Successful completion.

41174 >0 An error occurred.

41175 CONSEQUENCES OF ERRORS
41176 If any errors are encountered, the run is aborted and yacc exits with a non-zero status. Partial
41177 code files and header files may be produced. The summary information in the description file
41178 shall always be produced if the −v flag is present.

41179 APPLICATION USAGE
41180 Historical implementations experience name conflicts on the names yacc.tmp, yacc.acts,
41181 yacc.debug, y.tab.c, y.tab.h, and y.output if more than one copy of yacc is running in a single
41182 directory at one time. The −b option was added to overcome this problem. The related problem
41183 of allowing multiple yacc parsers to be placed in the same file was addressed by adding a −p
41184 option to override the previously hard-coded yy variable prefix.

41185 The description of the −p option specifies the minimal set of function and variable names that
41186 cause conflict when multiple parsers are linked together. YYSTYPE does not need to be changed.
41187 Instead, the programmer can use −b to give the header files for different parsers different names,
41188 and then the file with the yylex() for a given parser can include the header for that parser.
41189 Names such as yyclearerr do not need to be changed because they are used only in the actions;
41190 they do not have linkage. It is possible that an implementation has other names, either internal
41191 ones for implementing things such as yyclearerr , or providing non-standard features that it
41192 wants to change with −p.

1072 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

41193 Unary operators that are the same token as a binary operator in general need their precedence
41194 adjusted. This is handled by the %prec advisory symbol associated with the particular grammar
41195 rule defining that unary operator. (See Grammar Rules in yacc (on page 1065).) Applications
41196 are not required to use this operator for unary operators, but the grammars that do not require it
41197 are rare.

41198 EXAMPLES
41199 Access to the yacc library is obtained with library search operands to c99. To use the yacc library
41200 main():

41201 c99 y.tab.c −l y

41202 Both the lex library and the yacc library contain main(). To access the yacc main():

41203 c99 y.tab.c lex.yy.c −l y −l l

41204 This ensures that the yacc library is searched first, so that its main() is used.

41205 The historical yacc libraries have contained two simple functions that are normally coded by the
41206 application programmer. These functions are similar to the following code:

41207 #include <locale.h>
41208 int main(void)
41209 {
41210 extern int yyparse();

41211 setlocale(LC_ALL, "");

41212 /* If the following parser is one created by lex, the
41213 application must be careful to ensure that LC_CTYPE
41214 and LC_COLLATE are set to the POSIX locale. */
41215 (void) yyparse();
41216 return (0);
41217 }

41218 #include <stdio.h>

41219 int yyerror(const char *msg)
41220 {
41221 (void) fprintf(stderr, "%s\n", msg);
41222 return (0);
41223 }

41224 RATIONALE
41225 The references in Referenced Documents (on page xxviii) may be helpful in constructing the
41226 parser generator. The referenced DeRemer and Pennello article (along with the works it
41227 references) describes a technique to generate parsers that conform to this volume of
41228 IEEE Std 1003.1-2001. Work in this area continues to be done, so implementors should consult
41229 current literature before doing any new implementations. The original Knuth article is the
41230 theoretical basis for this kind of parser, but the tables it generates are impractically large for
41231 reasonable grammars and should not be used. The ‘‘equivalent to’’ wording is intentional to
41232 assure that the best tables that are LALR(1) can be generated.

41233 There has been confusion between the class of grammars, the algorithms needed to generate
41234 parsers, and the algorithms needed to parse the languages. They are all reasonably orthogonal.
41235 In particular, a parser generator that accepts the full range of LR(1) grammars need not generate
41236 a table any more complex than one that accepts SLR(1) (a relatively weak class of LR grammars)
41237 for a grammar that happens to be SLR(1). Such an implementation need not recognize the case,
41238 either; table compression can yield the SLR(1) table (or one even smaller than that) without

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1073

yacc Utilities

41239 recognizing that the grammar is SLR(1). The speed of an LR(1) parser for any class is dependent
41240 more upon the table representation and compression (or the code generation if a direct parser is
41241 generated) than upon the class of grammar that the table generator handles.

41242 The speed of the parser generator is somewhat dependent upon the class of grammar it handles.
41243 However, the original Knuth article algorithms for constructing LR parsers were judged by its
41244 author to be impractically slow at that time. Although full LR is more complex than LALR(1), as
41245 computer speeds and algorithms improve, the difference (in terms of acceptable wall-clock
41246 execution time) is becoming less significant.

41247 Potential authors are cautioned that the referenced DeRemer and Pennello article previously
41248 cited identifies a bug (an over-simplification of the computation of LALR(1) lookahead sets) in
41249 some of the LALR(1) algorithm statements that preceded it to publication. They should take the
41250 time to seek out that paper, as well as current relevant work, particularly Aho’s.

41251 The −b option was added to provide a portable method for permitting yacc to work on multiple
41252 separate parsers in the same directory. If a directory contains more than one yacc grammar, and
41253 both grammars are constructed at the same time (by, for example, a parallel make program),
41254 conflict results. While the solution is not historical practice, it corrects a known deficiency in
41255 historical implementations. Corresponding changes were made to all sections that referenced
41256 the filenames y.tab.c (now ‘‘the code file’’), y.tab.h (now ‘‘the header file’’), and y.output (now
41257 ‘‘the description file’’).

41258 The grammar for yacc input is based on System V documentation. The textual description shows
41259 there that the ’;’ is required at the end of the rule. The grammar and the implementation do not
41260 require this. (The use of C_IDENTIFIER causes a reduce to occur in the right place.)

41261 Also, in that implementation, the constructs such as %token can be terminated by a semicolon,
41262 but this is not permitted by the grammar. The keywords such as %token can also appear in
41263 uppercase, which is again not discussed. In most places where ’%’ is used, ’\’ can be
41264 substituted, and there are alternate spellings for some of the symbols (for example, %LEFT can
41265 be "%<" or even "\<").

41266 Historically, <tag> can contain any characters except ’>’, including white space, in the
41267 implementation. However, since the tag must reference an ISO C standard union member, in
41268 practice conforming implementations need to support only the set of characters for ISO C
41269 standard identifiers in this context.

41270 Some historical implementations are known to accept actions that are terminated by a period.
41271 Historical implementations often allow ’$’ in names. A conforming implementation does not
41272 need to support either of these behaviors.

41273 Deciding when to use %prec illustrates the difficulty in specifying the behavior of yacc. There
41274 may be situations in which the grammar is not, strictly speaking, in error, and yet yacc cannot
41275 interpret it unambiguously. The resolution of ambiguities in the grammar can in many instances
41276 be resolved by providing additional information, such as using %type or %union declarations. It
41277 is often easier and it usually yields a smaller parser to take this alternative when it is
41278 appropriate.

41279 The size and execution time of a program produced without the runtime debugging code is
41280 usually smaller and slightly faster in historical implementations.

41281 Statistics messages from several historical implementations include the following types of
41282 information:

41283 n/512 terminals, n/300 non-terminals
41284 n/600 grammar rules, n/1500 states
41285 n shift/reduce, n reduce/reduce conflicts reported

1074 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities yacc

41286 n/350 working sets used
41287 Memory: states, etc. n/15000, parser n/15000
41288 n/600 distinct lookahead sets
41289 n extra closures
41290 n shift entries, n exceptions
41291 n goto entries
41292 n entries saved by goto default
41293 Optimizer space used: input n/15000, output n/15000
41294 n table entries, n zero
41295 Maximum spread: n, Maximum offset: n

41296 The report of internal tables in the description file is left implementation-defined because all
41297 aspects of these limits are also implementation-defined. Some implementations may use
41298 dynamic allocation techniques and have no specific limit values to report.

41299 The format of the y.output file is not given because specification of the format was not seen to
41300 enhance applications portability. The listing is primarily intended to help human users
41301 understand and debug the parser; use of y.output by a conforming application script would be
41302 unusual. Furthermore, implementations have not produced consistent output and no popular
41303 format was apparent. The format selected by the implementation should be human-readable, in
41304 addition to the requirement that it be a text file.

41305 Standard error reports are not specifically described because they are seldom of use to
41306 conforming applications and there was no reason to restrict implementations.

41307 Some implementations recognize "={" as equivalent to ’{’ because it appears in historical
41308 documentation. This construction was recognized and documented as obsolete as long ago as
41309 1978, in the referenced Yacc: Yet Another Compiler-Compiler. This volume of IEEE Std 1003.1-2001
41310 chose to leave it as obsolete and omit it.

41311 Multi-byte characters should be recognized by the lexical analyzer and returned as tokens. They
41312 should not be returned as multi-byte character literals. The token error that is used for error
41313 recovery is normally assigned the value 256 in the historical implementation. Thus, the token
41314 value 256, which is used in many multi-byte character sets, is not available for use as the value
41315 of a user-defined token.

41316 FUTURE DIRECTIONS
41317 None.

41318 SEE ALSO
41319 c99 , lex

41320 CHANGE HISTORY
41321 First released in Issue 2.

41322 Issue 5
41323 The FUTURE DIRECTIONS section is added.

41324 Issue 6
41325 This utility is marked as part of the C-Language Development Utilities option.

41326 Minor changes have been added to align with the IEEE P1003.2b draft standard.

41327 The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

41328 IEEE PASC Interpretation 1003.2 #177 is applied, changing the comment on RCURL from the }%
41329 token to the %}.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1075

zcat Utilities

41330 NAME
41331 zcat — expand and concatenate data

41332 SYNOPSIS
41333 XSI zcat [file...]
41334

41335 DESCRIPTION
41336 The zcat utility shall write to standard output the uncompressed form of files that have been
41337 compressed using the compress utility. It is the equivalent of uncompress −c. Input files are not
41338 affected.

41339 OPTIONS
41340 None.

41341 OPERANDS
41342 The following operand shall be supported:

41343 file The pathname of a file previously processed by the compress utility. If file already
41344 has the .Z suffix specified, it is used as submitted. Otherwise, the .Z suffix is
41345 appended to the filename prior to processing.

41346 STDIN
41347 The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.

41348 INPUT FILES
41349 Input files shall be compressed files that are in the format produced by the compress utility.

41350 ENVIRONMENT VARIABLES
41351 The following environment variables shall affect the execution of zcat:

41352 LANG Provide a default value for the internationalization variables that are unset or null.
41353 (See the Base Definitions volume of IEEE Std 1003.1-2001, Section 8.2,
41354 Internationalization Variables for the precedence of internationalization variables
41355 used to determine the values of locale categories.)

41356 LC_ALL If set to a non-empty string value, override the values of all the other
41357 internationalization variables.

41358 LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
41359 characters (for example, single-byte as opposed to multi-byte characters in
41360 arguments).

41361 LC_MESSAGES
41362 Determine the locale that should be used to affect the format and contents of
41363 diagnostic messages written to standard error.

41364 NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

41365 ASYNCHRONOUS EVENTS
41366 Default.

41367 STDOUT
41368 The compressed files given as input shall be written on standard output in their uncompressed
41369 form.

41370 STDERR
41371 The standard error shall be used only for diagnostic messages.

1076 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

Utilities zcat

41372 OUTPUT FILES
41373 None.

41374 EXTENDED DESCRIPTION
41375 None.

41376 EXIT STATUS
41377 The following exit values shall be returned:

41378 0 Successful completion.

41379 >0 An error occurred.

41380 CONSEQUENCES OF ERRORS
41381 Default.

41382 APPLICATION USAGE
41383 None.

41384 EXAMPLES
41385 None.

41386 RATIONALE
41387 None.

41388 FUTURE DIRECTIONS
41389 None.

41390 SEE ALSO
41391 compress, uncompress

41392 CHANGE HISTORY
41393 First released in Issue 4.

Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved. 1077

Utilities

1078 Shell and Utilities, Issue 6 — Copyright  2001, IEEE and The Open Group. All rights reserved.

